IMPROVEMENT OF COOLING TOWER GEAR REDUCER

Apr. 10, 2004

Yeoun Ho Ji

CONTENTS

- 1. Purpose
- 2. Current status
- 3. System layout
- 4. Improvement of parts
- 5. Test result of Improvement part
- 6. Effect (Cost saving)
- 7. Conclusion
- 8. Action plan

1. Purpose

- ✓ To maintain good condition without break down
 of cooling tower system.
- ✓ To reduce maintenance cost through modification of sealing part.
- ✓ To prevent outflow of new gear reducer's expense. (Another country)

2-1. Current status

- ✓ Continuous operation of cooling tower system was not possible because of worn-out bearing, oil seal and consumable parts, and so on.
- ✓ If worn-out bearing, oil seal, consumable parts are changed to new ones, existing reducing gear sets can be continuous use.
- ✓ But, oil seal system should be changed from o-ring type to mechanical seal type because existing Gear shaft was worn-out and was showed Oil leakage at that point.

2-2. Current status

- ✓ Continue operation is impossible because wear and tear of gear was caused by oil leak.
- ✓ So it has to be replaced to new shaft.

2-3. Current status

- ✓ Shaft is composed of one body with a pinion gear. Hence replacing shaft means replacing pinion gear.
- ✓ So, new pinion gear and shaft will to be replaced with new one at the same time.

2-4. Current status

- ✓ When the pinion gears, replaced new one, Bull gear has to be replaced new one at same time.
- ✓ This is common request from gear makers.
- ✓ So, one gear set has to be replaced at once.
- ✓ But this was installed 10 years ago. So, we can not buy the assembly parts due to suspension of manufacture.

2-5. Current status

- ✓ Hence, we have to replace all of the gear reducer system.
- ✓ It is asked for a lot of cost for installation, removal and disassembly.

3-1. System layout

■ Cooling tower fan stack

✓ Diameter: 4300 mm

✓ Hight: 2300 mm

■ Cooling tower fan (Propeller)

✓ Material : Fiberglass Reinforced

Plastic

✓ Qty': Six Blades

3-2. Summary of revision point

✓ An example of normal facility ✓ Oil seal point

4-1. Problems of existing oil seal

✓ Before: Oil seal

- ✓ It was a touching type of seal and shaft, it shows oil leakage because of the wear and tear caused by using long time.
- ✓ Oil seal was attached on the surface of shaft with moving on the right and left. But because shaft was eroded.
- ✓ Material of a seal is the soft rubber.
- ✓ Because attached distance is short (8 mm) and initial fabrication cost is low, in general, makers prefer using this assembly parts.

4-2. Improving scheme of Seal

✓ After: Mechanical seal

- ✓ It (M/S) is not touched with a shaft. Even though that was using long time, the shaft will be not worn out.
- ✓Its attachment distance is longer than an oil seal.
 Oil seal and it has an complex structure.
 Hence, it is difficult to modify by users at site.

5-1. Mechanical seal detail

Stationary face is composed of carbon graphite and rotating part is coated with ceramic on the stainless.

Stationary part & rotating part

5-2. Mechanical seal detail (Stationary Part)

✓ Stationary Part Assembly

✓ Stationary Parts Detail

5-3. Mechanical seal detail (Rotation Part)

- ✓ Rotation Part (Front Side)
- Stainless + Ceramic coating

- ✓ Rotation Part (Rear Side)
 - O-Ring of inside
 - In order to minimize distance, slim

6-1. Installation of Mechanical seal (Stationary)

- ✓ Housing processing
- ✓ O-Ring attachment

✓ Installation of Stationary Part

6-2. Installation of Mechanical seal (Stationary)

✓ Assembled stationary part in housing.

✓ New housing is modified within ranges of structures and intensity being not influenced by using existing oil seal hole.
 And in new above one, new mechanical seal stationary was attached.

7-1. Installation of Mechanical seal (Rotating Part)

✓ Rotator was fixed by lock nut use

✓ Rotating Part is completed by Shaft Installation

8-1. Mechanical seal assembly detail

 \checkmark Assembled stationary part in housing.

✓ Completed by Shaft Installation of Rotating Part

8-2. Mechanical seal assembly detail

✓ Seal Tension adjustment processing (Free tension)

✓ Seal Tension adjustment completion (1.2mm)

8-3. Assembled mechanical seal test

✓ Running test

- ✓ After seal assemble as same condition of site, simulation test of assembled gear set was done in the maintenance shop in order to minimize risk.
- ✓ After shop test, they were installed in the original site.

9. Effect (cost saving)

(Unit: mil. Won)

	, , , , , , , , , , , , , , , , , , , ,		,				(Cilit: IIII. Woll)		
1	Gear Reducer Change	6	Set	45.6	2.0	45.6			
2	Removal Cost	6	Set	12.0	0.0	12.0	No, 1,2,3,4,5,6 Completed		
3	Installation Cost	6	Set	12.0	0.0	12.0			
-	Total cost saving			69.6	2.0	67.6	97% cost saving		

10. Conclusion

- ✓ We reviewed a lot of maker's M/C data to look for modifying part after existing oil seal of 8 mm was eliminate. But We couldn't get a proper assembly part. And/or, because of little things (6 ea order), it was difficult to look for specialists and to modify it.
- ✓ Hence, we had to modify it by ourselves. And it has been applied for 95 days since installation.
 But it doesn't show any problems until now.
- ✓ Reducing gear will be possible to be continuously used for long time without oil leakage.
- ✓ Finally, we will continuously do our best for cost savings in order to maximize MKC's benefits.

11. Action Plans

Descri	ntion	Sep. 2002						Oct. 2002									Remarks
Description		5	10	15	20	25	30	5	10	15	20	25	30				Kemarko
								1									
Gear Reducer No,	Plan												•				All Complated
1,3,4,5,6	Actual		- 10 Jo	- 848			X 1										

■ Cooling Tower Gear Reducer No, 1,2,3,4,5,6 : Oct. 24. 2002 Completed