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Abstract

In actual manufacturing industries, process
capability indices(PCI) are used to determine
whether a production process is capable of
producing items within a specified specification
limits. We study some vector-valued PCls
C,=(C,. G, and C, =(C,,C,,) in this article.
We propose some asymptotic confidence regions of
PCIs with bootstrapping and examine the
performance of those asymptotic confidence regions
under the assumption of bivariate normal
distribution.

1. Introduction

In practicing quality control it is frequently of
great interest to examine if the system is capable of
performing its job successfully during its mission
period. A variety of statistical techniques for
analyzingprocess capability have been proposed and
applied on a large scale to the manufacturing process
adopted by many different kinds of industries since
the early 1980's. To evaluate the degree of process
capability of a system, it is necessary to define a
quantitative measure that can explain the
performance of the system. Out of such a necessity,
several process capability indices have been
introduced to assess whether a production process is
capable of producing items which meet the
requirements of the specified tolerance limits. As
Flexible Manufacturing System is introduced, it is
not difficult to monitor several characteristic values
simultaneously. Also it is more reasonable to assume
those values are associated under the multivariate
distribution. So that some vector valued process
capability indices should be used to control process

system.

Kotz and Johnson(1993) extended capability
process indices to multivariate case and
Kocherlakota and Kocherlakota(1991) provided

joint probability distribution function for C »r and
C’I,y under the bivariate normal distribution.

Recently, Park, Lee and Cho(2002) suggested
asymptotic confidence regions for bivariate vector
valued C , and C ;.

In this article, we propose some efficient
confidence regions for vector valued PCls by using
the bootstrapping technique. In section 2, asymptotic
probability distributions for the plug-in estimators
for the bivariate C,=(C,..G,) and C .= (G, Cuty)
are introduced and asymptotic normal confidence
regions are proposed by ' computing the
variance-covariance matrix under the bivariate
normal distribution. In section 3, we derive the
bootstrap consistency for PCIs and provide two
types of bootstrap confidence regions. In section 4,
we compare the coverage probabilities of
approximate normal and two types of bootstrap
confidence regions for C, and C,, by simulation
study. It shows that approximate normal and the
standard bootstrap techniques are better confidence
regions than the approximate normal method when
the underlying process distribution is unknown.

2. Vector-valued PCIs and Approximate
Nommal Confidence Regions

2.1 Asymptotic Distribution of Our Estimators
In this section, we study the asymptotic

distribution of bivariate vector PCls for C,=(G..G,)
and C, = (G Gy and provide easier and more
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useful confidence region.
C, and C ,, are defined as follows :

d, d
C,=(GnCy)= [30 ?ty_)
Yy

C pk = (C'pk.r' Q)L'y)
_ (d.r —lp,— M| d,—lp,— ML) j

30, ! 30,
where,
d = USL,— LSL, d= USL,— LSL,
T 2 > Y 2 >
M= USL,-2+— LSL, ML= USLu;' LSL, ,

and USL,, LSL,, USL, and LSL, denote the upper and
lower specification limits for the values of
characteristics X and Y, to be measured.

Let's consider the estimators C , and C ,, by the

plug-in method.
d
G 0,000~

M_(cpk, )
(d,=1X—-M}| d,—|Y— Al
- 35 ’ 35,
where
-~z _ 1
=X= X __y___
B n by s Y,

We introduce some asymptotic results for our
vector-valued PCIs C , and C ,,(Park et al.(2002)).

Lemmal
With two finite fourth central moments
par=E(X —p,)" and p,,= E(Y— p,)", we obtain the
following result as n—>00;
(Zlm Z2m ZSH.’ Z4n)
= (va(X - n). va(¥ —u,),
V(82 —o2), vn(s? — o)

d d
—(2,.2,. 2y, Z,)=0N0, X, .,)

pir = EUX = )], gy = EL(Y = )], i=3,4
iy = ENX — p, )y — )], i.5=1,2

Theoreml
With two finite fourth central moments
por=E(X —p,)* and p,,= E(Y — p)*, we obtain the
following result as n—00;
V(G »—C p): vnlC pw—C pf'c w— C P)
d¢ dz  dz
G

Where Ti-’-‘-ai‘l‘ (“I— TI)Z’ 7-13:0-121+ (IJ‘I/— Ty)z’

)dMN(o V)

(2.2, 2,.2,)~ MN(@0.X ,,.,) and

U?r ,U'erly H3y .u'l.r2y
2 . Gy Mz.rxy .u'3y
4x4 = Rt 2 2}
symm. py, Oz /‘L212y O-.io'y
Hay— 0y
V , is obtained as follows.
(gt & 2
3602 Hir — O, 360 3 3 /-1'212y 0,0
V,= d2
3600
Similarly, we can obtain asymptotic distribution
for vector-valued PCI C ,

2)

y

b, oY)

2.2 Approximate Normal Confidence Regions

If a bivariate random sample (X,, V,), (X,, Y3), --,
(X, Y,) is from any bivariate probability distribution
with finite fourth central moments then 100(1 — )%
approximate normal confidence region for bivariate
process capability indices C, and C,. could be
obtained.

2.2.1 100(1 — «)% Approximate Normal
Confidence Region for C,

100(1 —«)% approximate normal confidence
region for vector process capability index C , would
be

(G ,—C )W NG, —C )< xh
where xp.., denotes lower 100 (1 — o }% percentile of
x*-distribution with 2 degrees of freedom and V ,
denotes the plug-in estimator for matrix V ,. Each
element of V , is obtained as follows.

2
1n= Vfa\r[_ d:% jz ""——dﬁ (/141—61)

60° 3608
= d; < 20i= d,
3658 ’ 18&2
“ —~ d,Z,
Tp22 = V‘"[_ 60'; J“ 360 (iyy—03)
Y
. 2&4——ﬂ—di
3603 1802
‘;pn:&pm 3603036\”(( ) (Y_l‘ty))
ity yisane ddy
36 18¢ Oy

2.2.2 100(1 — )% Approximate Normal
Confidence Region for C ,

100(1 — )% approximate normal confidence
region for vector process capability index C ,, would
be

C pk)S X(22;c«)

(€ - C )T ) E -
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Each element of V ,, is obtained as follows.

. —~( d.Z, 12|
3 i = Var(—éT;’—jJ

_ 4 G say, m—2
‘365’2 M oax U;+ 97‘{'
&
3658
di T—2
ERTF T

. ~ (M —Y-d)z, Z
T 2 = Var[ . 4 +—3—-02-
Yy
j— 2

BW=Yi—-d) (- _-n, 1

360 ° Ha= oy g

—_ 2

_ (-4 YT

~6
360,

— 2
_ (g, - Yl—d,;} 1
= + 5

1802

T—2

97

<20+

1
9

O pr12 = O pi21

__ dr (IA[I — lﬁJ _ dg{)
36030

X Cov (X = )2, (V= )

- iiIA Cov (X—p, )2, Y)
1800,

4 (M —-Yi-d) -222ns

=— —— - 2p°00

360303 poay

_ 40 -7-d)p?
180 .0,

where,
b= N X=X iy= 2 (V- )

and ,5 denotes sample correlation coefficient.

3. Bootstrap Confidence Regions

The method of bootstrap was introduced by
Efron(1979) as a nonparametric and computer
intensive method. Such method allows calculation of
confidence intervals for several parameters of
interest without the usual assumption of normality.
Hall(1988) provides excellent arguments explaining
which type of bootstrapping technique should be
used. Franklin and Wasserman(1992) propose three
different types of bootstrap confidence intervals for
G, Cy.and C,,.

3.1 Bootstrap Asymptotic Distribution
Our bootstrap Algorithm is as follows.

[Step1] Obtain bootstrap sample of size m, (X7, ¥7),
(x,,7,), -, (X, ¥.) by replacement from the given

random sample (X, V), (Xp. ¥2), -+, (X,. ¥,).

[Step2] Compute bootstrap sample mean X", Y and
sample variance S,%, §,? by the following manner

[Step3] Find vector-valued bootstrap estimators C ,
and C ;..

¢,=(c; a*>=[dz _dL)

v PR 38) 7 38,
¢ ;k = (C;kr’ C;ky)
(d, =X =M d— Y = M)
3S; ’ 3S,

First, we derive bootstrap asymptotic distribution
and provide bootstrap consistency of our
vector-valued PCIs C .

Lemma2
With two finite fourth central moments
par=E(X—p,)* and p,,= E(Y — p,)*, we obtain the
following result as n—00;
(Z7 s Zovis Zavar Zad)
=(vaX -X), /m¥ -7,
(S - 8, V(S - )k,

d d
—(2y, Z,, Zs, Z4)=A[N(0: X, ><4)

where
X=X 1), (X, Ys). . (X, ¥,)} and
U.Z Hiz1y M3y H1z2y
>R U; /‘1‘2:t1y4 M3y 2 2l
SYMm. [y — Oy oy =~ 00y
Hay =0y
Theorem?2

With two finite fourth central moments
par= E(X — p,)* and p,,= E(Y — p.)*, we obtain the
following result as n—>0;

\/E(G;—Gp): vrl€ ;,—Gp,,C;y—Cp)
d d
S-S LA e, v )
607, 6a,
where 7Z=di+ (- T), ©=0+k—T),
(2., 2y, 23, Z,)~ MN(0,% 4 .4) and
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O, .ul.rly K3z /‘l'l.r2y

2
Zl — Uy .u2.r1y l'l'3y
ix4 4 2 2
symm. gy, — 0, .H‘Zﬂy 00y
4
By = Ty

Also, we can provide bootstrap consistency for
vector-valued PCI C ;.

3.2 Bootstrap Confidence Region

Let C represent one of the vector valued PCI C,
and C,,, C represent the its corresponding plug-in
estimator and C “be the bootstrap estimator of C
from the bootstrap sample (X7, ¥y), (Xx;,v;), -~
(X, v").

3

3.2.1 Standard Bootstrap(SB)

To build a confidence region, we find the sample
mean vector C * and variance-covariance matrix S .
from B bootstrap estimates for € " =(C,C)),
i=1.2,---, B as follows.

1 Pl
—_* e C_r1 * *
C = 91': Bz;l S’;: 51‘1 51‘2
c,) | L o ’ 1 Sa

B yi

where,

B =9 * =9 3
5= (e - T - 7).

Then 100(1 —a)% SB confidence region for
bivariate PCI C is
(€ —cVis ) HE —C)=xh,

3.2.2 Studentized Bootstrap(STUD)

We could build a confidence region by locating
the percentile point from the distribution of
m( € -CYWC -C).

Then 100(1 — «)% STUD confidence region for
bivariate PCI C is

(@ -CcYW)'E -Cl=y,
where g, statisfies

Prim( € - €YV IV HE = Cl<ylx)=1-a
and V. and V' represent the corresponding
estimator and bootstrap estimator of
variance-covariance matrix V for vector valued PCI
C respectively.

4. Simulation Study
4.1 Simulation Procedures

To compare the performance of each method, we
choose the bivariate normal distribution with

parameter values as in the Tablel. The original
random sample and bootstrap sample size n and m
are chosen to be equal for the convenience. We
choose n =30, 60 and p=-0.9, -0.3, 0, 0.3, 0.9 under
this design, a simulation procedure is done as
following steps.

[Stepl] Take n(=30,60) bivariate samples from the
bivariate normal distribution , then generate B(=
1000) bootstrap bivariate samples of size m(=n)
from the original random samples.

[Step2] Build 95 % approximate normal(AN) and two
types of bootstrap confidence region{(SB, STUD) for
the bivariate vector process capability indices C by
using the sample from [Step1].

[Step3] Decide whether the true value of C is
contained in the confidence region by [Step2].

This simple simulation was then replicated ¥=
1000 times and thus a percentage of times the true
value of the index is within the calculated interval
could be obtained as a coverage probability.

Table1. Process parameter values in the simulation

e Iy T o, C

50.0 100.0] 3.0 3.0 [(1.0,1.0)
3.0 15 |a.020|cC,
Hy =2 1.5 1.5 |(2.0,2.0)
455 955[30 3.0 [(05,0.5)
30 1.0 |(0515)|C .
#y < 1.0 1.0 |(1.515)
500 955 30 3.0 [(1.0,05)
30 1.0 [(1.0,1.5)]C
1.5 1.0 |(2.0,1.5)

4.2 Simulation Result

The result based on the simulation procedures
discussed in section 4.1 are tabulated in Table2-4. In
this section, we discuss our observations made from
these tables in details.

First the 99% confidence interval for the 95%
confidence region for 1000 simulations is obtained
as (0.9333,0.967). Bold typed number in the table
indicates that the coverage probability is beyond the
scope of the interval. For the confidence region for
C ,, STUD method performs poorly comparing with
other two methods but as sample size increases there
is no difference among three methods.

Most poor cases are located in the case of o, > g,
From the Table3, we find similar pattern as in the
Table2. But there is somewhat different pattern in
the Table4. All three cases for o, =3.0, v, =1.0 and
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Table2. Coverage of confidence region for C ,

(tes s 02 0) n Method 09 03 0 03 09
(50.0,100.0,3.0,3.0) 30 | AN 0.945 0.955 0.958 0.957 0.943
SB 0.943 0.945 0.940 0.941 0.941
STUD 0.939 0.946 0.938 0.943 0.945
60 | AN 0.939 0.951 0.948 0.949 0.945
SB 0.939 0.945 0.945 0.942 0.949
STUD 0.936 0.937 0.945 0.937 0.934
(50.0,100.0,3.0,1.5) 30 | AN 0.927 0.926 0.932 0.928 0.928
SB 0.922 0.921 0.935 0.931 0.926
STUD 0.917 0.914 0.918 0.922 0.931
60 | AN 0.949 0.958 0.947 0.947 0.945
SB 0.944 0.945 0.943 0.938 0.942
STUD 0.941 0.944 0.942 0.937 0.941
(50.0,100.0,1.5,1.5) 30 | AN 0.941 0.942 0.946 0.951 0.939
SB 0.939 0.944 0.948 0.947 0.940
STUD 0.943 0.932 0.930 0.941 0.937
60 | AN 0.941 0.955 0.952 0.958 0.948
SB 0.941 0.949 0.954 0.947 0.939
STUD 0.940 0.939 0.942 0.952 0.944
Table3. Coverage for C ;. (u. < M, p, < M)

((TRTIR n Method 09 03 0 03 09
(45.5,95.5,3.0,3.0) 30 | AN 0.955 0.962 0.962 0.951 0.955
SB 0.939 0.945 0.956 0.952 0.951

STUD 0.932 0.946 0.949 0.951 0.951

60 | AN 0.945 0.950 0.950 0.941 0.937

SB 0.932 0.937 0.932 0.932 0.930

STUD 0.938 0.935 0.938 0.932 0.935

(45.5,95.5,3.0,1.0) 30 | AN 0.944 0.947 0.944 0.951 0.955
SB 0.937 0.938 0.936 0.940 0.939

STUD 0.934 0.926 0.928 0.931 0.944

60 | AN 0.955 0.965 0.958 0.956 0.959

SB 0.947 0.957 0.960 0.949 0.944

STUD 0.943 0.956 0.958 0.950 0.940

(45.5,95.5,1.0,1.0) 30 | AN 0.952 0.946 0.945 0.953 0.939
SB 0.940 0.941 0.942 0.949 0.933

STUD 0.941 0.935 0.942 0.944 0.933

60 | AN 0.953 0.951 0.947 0.959 0.950

SB 0.948 0.951 0.953 0.956 0.942

STUD 0.946 0.945 0.947 0.952 0.947

Table4. Coverage for C ;. (u, = M, u, < M)

(Bes oy 02, Ty) n Method 09 -03 0 03 09
(50.0,95.5,3.0,3.0) 30 | AN 0.934 0.961 0.959 0.958 0.927
SB 0.934 0.933 0.945 0.942 0.947

STUD 0.924 0.937 0.943 0.934 0.930

60 | AN 0.927 0.948 0.949 0.944 0.920

SB 0.936 0.941 0.938 0.940 0.936

STUD 0.940 0.941 0.938 0.938 0.935

(50.0,95.5,3.0,1.0) 30 | AN 0.907 0.926 0.930 0.929 0.915
SB 0.912 0.916 0.919 0.923 0.916

STUD 0.916 0.910 0.916 0.913 0.914

60 | AN 0.930 0.939 0.939 0.932 0.922

SB 0.933 0.939 0.936 0.923 0.937

STUD 0.926 0.934 0.930 0.927 0.933

(50.0,95.5,1.0,1.0) 30 | AN 0.938 0.941 0.950 0.951 0.940
SB 0.933 0.931 0.942 0.943 0.940

STUD 0.933 0.930 0.934 0.938 0.932

60 | AN 0.945 0.943 0.948 0.950 0.939

SB 0.935 0.943 0.948 0.946 0.937

STUD 0.936 0.931 0.942 0.944 0.939
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n =30 perform poorly but as n increases to 60 this
undesirable property changes. In all cases AN
method yields higher coverage probability than other
two methods.

5. Conclusions

For each index, regardless of the underlying
distribution or the sample size, the coverage
probability of AN method is higher than the’ other
two. There is another tendency of better performing
as we increase the number n of sample size. In
conclusion, AN and SB methods are better than
STUD method. It is recommended that the SB
method should be wused when there is no
informations  available regarding underlying
distribution which is the most case in the practice.
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