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Abstract - The generalized knapsack prob-
lem, or gknap is the combinatorial optimization
problem of optimizing a nonnegative linear func-
tional over the integral hull of the intersection of
a polynomially separable 0 — 1 polytope and a
knapsack constraint. Among many potential ap-
plications, the knapsack, the restricted shortest
path, and the restricted spanning tree problem
are such examples.

We prove via the ellipsoid method the equiva-
lence between the fully polynomial approximabil-
ity and a certain pseudo-polynomial separability
of the gknap polytope.

1 Introduction

Assume that @ is polynomially separable 0 —
1 integral polytope, ¢,d € Z%, and B € Z..
Then a generalized knapsack problem can be
written as follows:

Problem 1.1 : gknap

T

min, Or max crT
8.t reQ
dfz <, or > B
z € {0,1}".

Thus, given @, there are four possible com-
binations of the objective-type and the in-
equality sign in the knapsack constraint. If,
for instance, the objective is minimization
and the knapsack constraint has < inequal-
ity sign, then we denote the problem by
gknap(min, <).

Example 1.2 Knapsack problem as a
gknap(max, <) or gknap(min, >). Trivially,
the knapsack problem is a gknap with Q@ =
conv{0,1}". Let p; and wj, respectively, be
the profit and volume of the j-th item, and
W the volume of the knapsack. Then the
knapsack problem is to choose a most prof-
itable set of items that fits the knapsack ca-
pacity,

max pTz
st z € {0,1}"
wlz < W,

or, to find a least profitable set of items
which, if removed, makes the remaining
items fit the knapsack,

min pTz
st z € {0,1}"
wlz > S w; — W.

Example 1.3 Restricted shortest path
problem, RSP: Let G = (V, A) be a di-
rected graph. Let s, ¢ € V. Then, with
a “cost”, ¢;; and a “delay”, d;; assigned to
each arc (4,7), the restricted shortest path
problem is to find a minimum cost (s,t)-
directed path among the paths whose delay
is no greater than some bound B.

min ¢(P)

P € P, the (s,t)-directed paths
d(P) < B.

s.t
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Then, it is well-known that Q@ C R#, the
convex hull of the characteristic vectors of
(s,t)-directed paths of G, is polynomially
separable 0 — 1 polytope. Hence RSP is a
gknap(min, <).

The knapsack problem and RSP are
known to have FPTAS. Both problems ad-
mit a pseudo-polynomial dynamic program-
ming algorithm which finds an optimum in a
pseudo-polynomial time in a single parame-
ter, cor d.

But, not every gknap problem necessarily
has such a nice dynamic programming algo-
rithm.

Example 1.4 Restricted spanning tree
problem, RST: Consider a connected undi-
rected graph G = (V,E) with V =
{1,2,---n}. Each edge e is assigned two
nonnegative integers, the “cost”, c. and
“length”, do. Then, RST is the problem of
finding a spanning tree of the minimum cost
whcese length is no greater than a predeter-
mined bound, B. '

min ¢(T)
T € 7, the spanning trees of G
dT)<B

5.6

2 Preliminaries

It is very convenient to interchange the roles
of ¢ and d using the symmetry of the two
parameters (2, 4].

Definition 2.1 Let @ be given. We will call
gknap(min, >) and gknap(max, <) are conju-
gates. On the other hand, gknap(min, <) or
gknap(max, >) is the conjugate of itself, or
self-conjugate. :

Definition 2.2 Given ¢ > 0, by e
approximation we mean to find a feasible so-
lution £ of a gknap satisfying

|cT2 — OPT| < eOPT.

We will use () to denote the binary en-
coding length of numbers, vectors, matrices,
or even an instance of a problem. Similarly,
|| - [loo will denote the maximum absolute
value of a number of a vector, matrix, or an
input number of a problem instance. Note
that as Q is 0 — 1 integral, its vertex and
facet complexity are polynomials of n. So
the encoding length of gknap is determined
by 7, {Cmax), (dmax), and (B).

Definition 2.3 We say a gknap
is  fully polynomially approximable
if e-approximation can be done in

poly(n, (Cmax), {(@max), (B),1/¢).

Note that a fully polynomial approximation
algorithm is also referred to as a fully polyno-
mial time approrimation scheme or FPTAS
in the literature.

Remark 2.4 We will use the notation
poly(:--) rather abusively. They may not
be the same polynomial with the same set
of variables. It may be best read as “some
polynomial of ---7.

The following result has been established
by Hong and the proof is omitted.

Theorem 2.5 Given Q, a gknap is fully
polynomially approzimable if and only if its
congjugate is solvable in a time that is pseudo-
polynomial in the size of the knapsack con-
straint, namely in poly(n, (cmax); dmax, B)
time.

3 Pseudo-polynomial sepa-
ration and fully polyno-
mial approximation

3.1 Ellipsoid method with separa-
tion subroutine.

Grotschel, Lovédsz and Schrijver, in their
seminal work [1], observed an equivalence
between the separation and optimization on
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polyhedra. Even when the polyhedron is not
given by an explicit set of linear inequalities,
the ellipsoid method can be applied to solve
the feasibility problem in polynomial time if
the separation problem is solvable in polyno-
mial time.

Unlike when a linear system is given ex-
plicitly, when the polyhedron P is not full-
dimensional, the technique that perturbing
P into an equivalent full dimensional poly-
hedron does not seem to be promising as, for
instance, the separation of P and that of the
perturbed P seem to be quite different prob-
lems: the perturbation will mar the combina-
torial problem of P that is usually essential
for an efficient separation algorithm. The fol-
lowing theorem is adopted from {5].

Theorem 3.1 Let P C R™ be a polyhe-
dron whose facet complezity is bounded by
@. And suppose a separation algorithm A
is given. Then there is a polynomial ¥(.,-)
such thaot the feasibility problem is solvable
in T x U(n,p), where T is the mazimum
time required by A for inputs of size at most

¥(n, ).

This theorem shows certain independence
between the main algorithm and the sepa-
ration subroutine. It requires only that the
separation algorithm 4 correctly finds a sep-
aration hyperplane. Then the main algo-
rithm guarantees that the size of the current
solution bounded by ¥(n,y) determined a
priori and independently of A. And A only
affects the complexity of each iteration. In
particular, .4 does not have to be pclyno-
mial in Theorem 3.1. This enables us to de-
rive an analogy between fully polynomial ap-
proximation and the pseudo-polynomial sep-
arability on gknap.

3.2 Pseudo-polynomial separation
and fully polynomial approxi-
mation.

Write P=QN{z:d7z <, or > B}. Also
denote by Py, the integral hull, namely the

convex hull of the integral solutions of P =
Qn{z:dTz <, or > B}. If necessary, we
will also use notation P< or P2, respectively,
depending on whether knapsack constraint is
< of >-type.

Then we can find OPT of gknap by find-
ing a minimum or maximum < such that the
polytope Pi(y) = Prn{z:cfz <, or >~}
is feasible. Thus to find OPT it suffices to
solve the feasibility problem of Py(y) for a
fixed 0 < v < ncmax.

First, the complexity of P; is poly(n),
since, by assumption, every vertex of @ is
0 — 1 integral. Its complexity, namely the
maximum of an encoding length of a vertex
is O(n). Then it is well-known that the facet
complexity is poly(n) [5]. Hence the facet
complexity of Pi(v), is essentially bounded
by the encoding length of ¢’z <, or > ~.

Lemma 3.2 The facet complezity v, of
Py() is poly(n, (cmax))-

This essentially determines the number of it-
erations of ellipsoid method. :

Notice that given a separation algorithm
for Py, it is a trivial matter to devise a sepa-
ration algorithm for Py(v) which runs in es-
sentially the same computation time. Now
we denote by sep(y | Pr) the problem to sep-
arate y from Py.

Lemma 3.3 Let y € Q" be any vector. If
there is a separation algorithm A which solve
sep(y | Pr) in poly(n, (¥), dmax, B), then
gknap is solvable in poly(n, (Cmax), @max, B)

Proof. According to Theorem 3.1 we may
assume (y) is bounded by ¥(n,y,) which
is, from Lemma 3.2, poly(n,(cnax))-
Then the complexity of A becomes
poly(n, (Cmax), Amax, B).

Hence by Theorem 3.1 the total run-
ning time for solving feasibility prob-
lem is O(poly(n, (Cmax),%max,B) X
¥(n,py)) which is poly(n, (Cmax), dmax, B)-
Hence OPT is also solvable in
poly(n, (cmax), dmax, B). O
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Remark 3.4 Since Pr(y) C [0,1]"*. We can
the initial point of the ellipsoid method inde-
pendent of ¢. However, in general iterations,
it sieems to be inevitable that the next cur-
rent point y is determined by c (See Figure
1). Thus it seems to be essential that the
rurning time of A is polynomial in (y).

Figure 1: The next current point y’ is deter-
mired by c.

Theorem 3.5 The gknap is fully polynom:-
ally approzimable if for anyy € Q" the sepa-
ration problem for Pr of its conjugate, sep(y |
Py) 1is solvable in poly(n, (Ymax); dmax, B).

Proof. From Theorem 2.5 and Lemma 3.3.
O

Lzt’s consider the converse of Theorem 3.5
which is true if, by Theorem 2.5, the solvabil-
ity of its conjugate in poly(n, (¢max), @max, B)
would imply the solvability of the separa-
tion of the integral hull Pr, sep(y | FP;) in
poly{(n, {Ymax), dmax, B). The “if part” of the
above statement seems to be plausible con-
sidering the following theorem [5].

Theorem 3.6 Let y € Q" and P C R®
be ¢ polyhedron whose facet complezity is
bour.ded by . And suppose an algorithm A
is given for the optimization problem defined
by FFC R™ and y € Q™. Then there is an al-
gorithm for sep(y | P) whose running time is
poly(n, @, (4), 7(y, P)), where T{y, P) is the
runring time of A.

If gknap is fully polynomially approx-
imable, then by Theorem 2.5, opt(y |

Pr) on Pr of its conjugate is solv-
able in poly(n, (Ymax); dmax, B).  There-
fore, by Theorem 3.6, sep(y | Pr) is

solvable in poly(n, ¢, (y),7(y, P;)) which is
poly(n, <ymax>7 dmax, B).

However, we need to be careful since in
gknap we assumed the ¢ > 0. Hence we can
apply the above theorem only if y > 0. But,
if y; < 0 for some j its separation from P is
a trivial problem. Hence,

Theorem 3.7 The gknap is fully polyno-
mially approzimable if and only if for any
y € Q" the separation problem for P; of
its congugate, sep(y | Pj) is solvable in
poly(n, (Ymax), dmax, B)-
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