P017

Introgression for Agronomic Traits from Oryza minuta into Rice, O. sativa

F.X.Jin¹, S.J.Kwon², K.H.Kang², H.G.Hwang², and S.N.Ahn¹

Department of Agronomy, Chungnam National University, Daejeon 305-764;

National Institute of Crop Science, Suwon 441-100, KOREA

OBJECTIVES

To identify and characterize alien QTLs underlying traits of agronomic importance in backcross progeny derived from a cross between *Oryza sativa* and *O. minuta* using PCR-based markers.

MATERIALS AND METHODS

1. Plant materials

o Parent: Hwaseong and OM79006 (Hwaseong/O. minuta BC5F6)

o Mapping population: 75 F_{2:3} lines

2. Genotyping: SSR markers

3. Traits evaluated: Nine traits including heading date and culm length

RESULTS AND DISCUSSION

- 1. The frequency distribution of 9 traits in 75 F_{2:3} lines showed nearly normal distribution, and transgressive segregants exceeding the parental scores were observed.
- 2. A total of 511 SSR markers were used in the polymorphism survey. Of these, 231 markers (45.2%) showed polymorphism between Hwaseong and O. minuta. Among the polymorphic markers, 23 markers detected O. minuta-specific fragments in the OM79006 parent, and were used for genotype of the 75 F_{2:3} lines.
- 3. To detect association of introgression with morphological traits, single point analysis was employed. For culm length, the *O. minuta* allele increased culm length at *cl6* which explained 9.6% of the total phenotype variation, and one QTL for 1,000 seed weight, *tsw7*, was identified. These alleles have not been detected in previous QTL studies between *Oryza* cultivars, indicating potentially novel alleles from *O. minuta*. The QTLs detected in this study might provide a rich source of information about the natural genetic variation of rice.

*Corresponding author: Tel: 042-821-5728 E-mail: ahnsn@cnu.ac.kr

Fig. 1. A map with polymorphic markers between the parents. QTLs are labeled on the left of the chromosome. Dark chromosome regions mark the specific *O. minuta* introgressions.

Table 1. QTLs detected for five traits based on single-point analysis in an F_{2:3} population.

Trait	QTL	SSR	Chr.	P	R ² (%) -	Mean			
						H/H	H/O	00	Allele effect
Culm length	cl6	RM225	6	0.0068	9.6	69.65	72.79	75.59	3.00
Seed length	s13	RM411	3	0.0288	6.4	5.23	5.31	5.30	0.04
	sl11	RM536	11	0.0019	12.5	5.21	5.30	5.32	0.06
Seed width	sw10	RM239	10	0.0466	5.3	2.93	3.01	3.00	0.04
1,000 seed wt.	tsw7	RM18	7	0.0378	5.8	24.33	24.41	26.39	1.03
Seed L/W ratio	lw10	RM474	10	0.0273	6.5	1.82	1.76	1.75	-0.04
	lw11	RM1812	11	0.0369	5.8	1.72	1.78	1.79	0.04

H/H, H/O, O/O: Hwaseong homozygote, Hwaseong / OM79006 heterozygote, OM79006 homozygote, respectively.

Fig. 2. Frequency distribution of 4 traits in the F_{2:3} population (P1: Hwaseongbyeo, P2: OM79006).