# P013

# Growth Simulation of Ilpumbyeo under Korean Environment Using ORYZA2000: I. Estimation of Genetic Coefficients

Chung-Kuen Lee<sup>1\*</sup>, Jae-Hoon Shin<sup>2</sup>, Jin-Chul Shin<sup>1</sup>, Duk-Su Kim<sup>1</sup>, and Kyung-Jin Choi<sup>1</sup>

National Crop Experiment Station, RDA, Suwon 441-100, Korea

<sup>2</sup>Informatics division, RDA, Suwon 441-707, Korea

## **Objectives**

This experiment was conducted to calculate new genetic coefficients for growth simulation of Korean varieties under Korean environments using ORYZA2000.

## Material and Methods

O Varieties: Ilpumbyeo

O Data set for estimation of genetic coefficients

| Year | Date (day-month) |               | N fertilizing           | No. of   | Management items                                                     |
|------|------------------|---------------|-------------------------|----------|----------------------------------------------------------------------|
|      | Sowing           | Transplanting | (kg/ha)                 | sampling | Measured item                                                        |
| 2000 | 26 Ap -          | 26 May        | 110, 150                | 4        | LAI, dry weight of leaf, stem                                        |
|      | 16 May           | 10 June       |                         |          | and panicle                                                          |
| 2001 | 21 Apr           | 21 May        | 110, 150                | 5        | LAI, dry weight of leaf, stem                                        |
|      | 14 May           | 8 June        |                         |          | and panicle                                                          |
| 2003 | 26 Apr           | 26 May        | 0, 60, 120,<br>180, 240 | 10       | LAI, dry weight and nitrogen concentration of leaf, stem and panicle |

\* Method 1: using data under high nitrogen applicated condition (180, 240 kg N/ha in 2003)

Method 2: using pooled data under various condition

O Calculated genetic coefficients

Development rates, Partitioning factor, Specific leaf rate, Leaf death rate, Fraction of stem reserves, Nitrogen fraction in leaves on leaf area base

## **Summary**

- In the growth simulation using genetic coefficients calculated with fooled data under various condition, WAGT was not higher and LAI, WLVG, WSO were higher, but WST was similar before grain-filling stage after then became lower because of higher translocation of carbohydrates than in the growth simulation using genetic coefficients calculated with data under high nitrogen applicated condition.
- Of Genetic coefficients should be calculated with data showing potential yield in ORYZA2000, but under 180 kg and 240 kg N condition in 2003, plants were infected by panicle blast and also yield was not higher than under 120 kg N condition showing not potential condition and therefore not appropriate for genetic coefficients estimation compared with pooled data from various condition.

\*Corresponding author: Tel: 031-290-6794 Email: leegaka@rda.go.kr



Fig. 1 Partitioning factor of aboveground dry matter over leaves, stems, and panicles.



Fig. 2 Specific leaf area(SLA) as function of DVS.



Fig. 3 Change of simulated dry weight of total aboveground(WAGT), leaves(WLVG), stems(WST), panicles(WSO) and LAI according to DVS.