The Health Effects of Asian Dust in Korea

Ho-Jang Kwon

Department of Preventive Medicine, College of Medicine, Dankook University

Contents

- Korean's perception about the Asian dust?
- Characteristics of the Asian dust
- Epidemiologic studies on the Asian dust
- Asian dust and admission
- Asian dust and daily mortality

What's The Asian Dust?

- Dust clouds or storm blown by winds from the arid deserts of Mongolia and China in springtime; *Whangsa*, which means "yellow sand" in Korean.
- Sometimes transported across the Pacific and detected on the western coast of North America (Husar *et al.*, 2001)

Survey Design				
Population	Residents of Seoul Metropolitan area, aged 20 or more			
Sample Size	500			
Survey Method	Telephone Interview with Structured Questionnaire			
ampling Method	Random sampling using telephone books			
Standard Error	±4.38 (95% CI)			
Study Period	2003/5/12~ 2002/5/13			

Have you ever visited hospitals due to Asian dust?

How do we know the health effects of the Asian dust event?

- Analogical inference
- from physio-chemico-biologicial property of dust
- Toxicological studies
- Epidemiological approach
- Respiratory symptoms
- Physiological index
- Utilization
- Mortality

Isolated bacteria from soil in china and dust of Yellow sand-Rural development administration

D	Area			
Bacteria	China	Suwon, Korea		
Arthrobactor sp	+			
Bacillus sp	+			
Brevibacterium sp	+			
Cellulomonas sp	+			
Curtobacterium sp	•	+		
Deinococcus sp.	+	•		
Kocuria sp.	+	•		
Micrococcus sp.	+	•		
Pseudomonas sp.	•	+		
Rhodococcus sp.	•	+		
Streptoverticillium sp.	+	•		
Tsukamurella sp.	•	+		

Fungus and Virus

Fungus

- Five molds were identified from the soil in china and 8 were identified from the dust of yellow sand, 5 were found in both samples
- All the genera found are nontoxic and common
- Virus
- Not detected in both samples

Cytotoxicity of yellow sand in lung epithelial cells

- Rat alveolar type II cell line was treated with 3 particles (silica, titanium dioxide, yellow sand)
- Silica showed the strongest toxic effect while TiO₂
 had the least toxic effect.

Source: Kim et al., J of Bioscience, in press

Asian dust and respiratory symptoms and pulmonary function

- Twenty one patients with bronchial asthma in Seoul, spring of 2000
- Asthma and rhinoconjuctivitis symptoms were recorded by self-administered standardized questionnaire and by monitoring PEF
- No statistically significant relationship between the increment of yellow sand particles and respiratory symptoms or PEF variability

Source: J Asthma Allergy Clin Immunol 21(6):1179-1186,2001)

Is daily mortality and morbidity associated with the Asian dust events?

Daily Averages of Environmental Levels and Pollutants on Asian dust days and Control days in Seoul, Korea, 2000-2002 Spring

	Asian dust days (N=46)			ol days =230)
	Mean	(S.D.)	Mean	(S.D.)
Temperature †	10.1	(5.4)	12.9	(5.9)
Relative humidity (%)	53.1	(15.2)	56.9	(13.4)
Daily temperature range*	8.7	(3.0)	9.9	(2.9)
$PM_{10} (\mu g/m^3) \dagger$	204.5	(160.3)	80.8	(31.4)
CO (100ppb)	8.6	(3.3)	8.3	(2.7)
NO ₂ (ppb)*	36.3	(13.2)	40.6	(10.8)
O ₃ (ppb)	19.1	(6.1)	19.4	(6.9)
SO ₂ (ppb)	5.8	(2.2)	6.0	(2.0)
*p<0.05, †p<0.01				

Daily Averages of Hospital Admissions on Asian dust days and Control days in Seoul, Korea, 2000-2002 Spring

Asian dust days (N=46)		Control days (N=230)	
Mean	(S.D.)	Mean	(S.D.)
442.6	(106.9)	390.0	(113.2)
450.8	(106.7)	412.4	(117.3)
55.8	(16.3)	47.3	(16.8)
119.1	(38.6)	108.6	(40.0)
_	(N= Mean 442.6 450.8 55.8	•	(N=46) (N= Mean (S.D.) Mean 442.6 (106.9) 390.0 450.8 (106.7) 412.4 55.8 (16.3) 47.3

^{*}p<0.05

Estimated Percentage Increases in the Risk of Hospital Admissions and 95% Confidence Intervals Associated with Asian Dust Events across the Various Lags

	Same day	3-Day	7-Day
•		Moving average	Moving average
Total respiratory	9.0	7.8	4.3
disorders	(7.3, 10.8)	(6.1, 9.6)	(2.6, 6.0)
Total cardiovascular	5.0	3.7	2.4
disorders	(3.3, 6.6)	(2.1, 5.4)	(0.8, 4.1)
Asthma	13.4	12.3	3.1
	(8.4, 18.6)	(7.4, 17.5)	(1.2, 5.0)
Ischemic heart	5.3	4.7	2.5
disease	(2.1, 8.6)	(1.5, 7.9)	(0.5, 4.6)

Daily Averages of Hospital Admissions on Asian dust weeks and Control weeks in Seoul, Korea, 2002 spring

	Asian dust weeks (N=2)		Control weeks (N=6)	
•	Mean	(S.D.)	Mean	(S.D.)
Daily admissions from respiratory disorders	462.4	(25.8)	431.3	(37.1)
Daily admissions from cardiovascular disorders	450.2	(6.4)	447.0	(27.4)
Daily admissions from asthma	53.9	(0.2)	50.1	(5.6)
Daily admissions from ischemic heart disease	126.8	(13.6)	124.4	(9.6)

Daily Averages of Deaths on Asian dust weeks and Control weeks in the spring of 2002, Seoul, Korea

	Asian dust weeks (N=2)		Control week (N=6)	
,	Mean	(S.D.)	Mean	(S.D.)
Daily deaths for all causes	109.9	(9.2)	108.1	(9.1)
Daily deaths for aged 65 yrs and older	65.6	(6.8)	63.6	(7.2)
Daily deaths for respiratory disease	6.7	(3.2)	5.7	(2.2)
Daily deaths for cardiovascular disease	25.6	(4.3)	26.7	(4.8)

Summary

- The risk of being admitted with respiratory disease is increased by 9% on the Asian dust day
- The risk of cardiovascular admission is increased by 5%
- During the great dust event in 2002, the counts of respiratory admission seems to be increased, but we couldn't observed the epidemic of respiratory disease
- The Asian dust events are weakly associated with daily mortality