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Abstract 
 

This paper describes a modification to the SACK (Selective Acknowledgement) Transmission Control Protocol’s 
(TCP), called SACK TCP with Probing Device, SACK works in conjunction with Probing Device, for improving 
SACK TCP performance when more than half a window of data lost that is typical in handoff as well as unreliable 
media. It shows that by slightly modifying the congestion control mechanism of the SACK TCP, it can be made to 
better performance to multiple packets lost from one window of data. 
Keywords: congestion control, congestion window, retransmission timeout, error detection, error recovery. 
 

I. Introduction 

Current implementations of TCP use an 
acknowledgment number field that contains a 
cumulative acknowledgment, indicating the TCP 
receiver has received all of the data up to the indicated 
byte. A selective acknowledgment (SACK) option 
allows receivers to additionally report non-sequential 
data they have received. When coupled with a selective 
retransmission policy implemented in TCP senders, 
considerable savings can be achieved. 
In this paper, we illustrate SACK TCP performs the 
best when less than half a window of data lost as 
comparison with Tahoe and Reno TCP. So we will then 
suggest a simple probing Device and an Immediate 
Recovery strategy are grafted into SACK TCP, which is 
responsive to the detected error conditions by 
alternating Slow Start and Immediate Recovery, in 
order to improve SACK TCP performance when more 
than half a window of data lost, and compare its results 
with the unmodified version. 
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II. Tahoe, Reno and SACK TCP 

Tahoe TCP: Tahoe TCP congestion control algorithm 
includes Slow Start, Congestion Avoidance,       
and Fast Retransmit [4]. It also implements an 
RTT-based estimation of the retransmission timeout. In 
the Fast Retransmit mechanism, a number of 
Successive (the threshold is usually set at three), 
duplicate acknowledgments (dup ACKs) carrying the 
same sequence number triggers a retransmission 
without waiting for the associated time-out event to 
occur. The window adjustment strategy for this “early 
time-out” is the same as for the regular time-out: Slow 
Start is applied. The problem, however, is that Slow 
Start is not always efficient, especially if the error was 
purely transient or random in nature, and not persistent. 
In such a case the shrinkage of the congestion window 
is, in fact, unnecessary, and renders the protocol unable 
to fully utilize the available bandwidth of the 
communication channel during the subsequent phase of 
window re-expansion. 
Reno TCP: The Reno TCP modified the Fast 
Retransmit of Tahoe TCP to include Fast Recovery. 
The new algorithm prevents the communication path 
(“pipe”) from going empty after Fast Retransmit, 
thereby avoiding the need to Slow Start to re-fill it after 
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a single packet loss. Fast Recovery operates by 
assuming each dup ACK received represents a single 
packet having left the pipe. Thus, during Fast Recovery 
the TCP sender is able to make intelligent estimates of 
the amount of outstanding data. 
A TCP sender enter Fast Recovery after the threshold 
of dup ACKs is received, the sender retransmits one 
packet and reduces its congestion window by one half. 
Instead of Slow Start, as is performed by a Tahoe TCP 
sender, the Reno TCP sender uses additional incoming 
dup ACKs to clock subsequent outgoing packets. 
In Reno TCP, the sender' s usable window becomes 
min (awin, cwnd + ndup) where awin is the receiver' s 
advertised window, cwnd is the sender' s congestion 
window, and ndup is maintained at 0 until the number 
of dup ACKs reaches threshold, and thereafter tracks 
the number of duplicate ACKs. Thus, during Fast 
Recovery the sender “inflates” its window by the 
number of dup ACKs it has received, according to the 
observation that each dup ACK indicates some packet 
has been removed from the network and is now cached 
at the receiver. After entering Fast Recovery and 
retransmit a single packet, the sender effectively waits 
until half a window of dup ACKs have been received, 
and then sends a new packet for each additional dup 
ACK that is received. Upon receipt of an ACK for new 
data, the sender exits Fast Recovery by setting ndup to 
0. 
Reno TCP's Fast Recovery algorithm is optimized for 
the case when a single packet is dropped from a 
window of data. The Reno TCP sender retransmits at 
most one dropped packet per round-trip time. Reno 
TCP significantly improves upon the behavior of Tahoe 
TCP when a single packet is dropped from a window of 
data, but can suffer from performance problems when 
multiple packets are dropped from a window of data. 
SACK TCP: The SACK option follows the format in 
[1]. From [1], the SACK option field contains a number 
of SACK blocks, where each SACK block reports a 
non-contiguous set of data that has been received and 
queued. The first block in a SACK option is required to 
report the data receiver's most recently received 
segment, and the additional SACK blocks repeat the 
most recently reported SACK blocks. 
The congestion control algorithms in our SACK TCP 

are a conservative extension of Reno TCP's congestion 
control. The main difference between the SACK TCP 
and the Reno TCP is in the behavior when multiple 
packets are dropped from one window of data.  
As in Reno TCP, the SACK TCP enters Fast Recovery 
when the data sender receives threshold dup ACKs. 
The sender retransmits a packet and cuts the congestion 
window in half. During Fast Recovery, SACK TCP 
maintains a variable called pipe that represents the 
estimated number of packets outstanding in the path. 
(This differs from the mechanisms in the Reno TCP.) 
The sender only sends new or retransmitted data when 
the estimated number of packets in the path is less than 
the congestion window. The variable pipe is 
incremented by one when the sender either sends a new 
packet or retransmits an old packet. It is decremented 
by one when the sender receives a dup ACK packet 
with a SACK option reporting that new data has been 
received at the receiver.  
Use of the pipe variable decouples the decision of when 
to send a packet from the decision of which packet to 
send. The sender maintains a data structure, the 
scoreboard that remembers acknowledgments from 
previous SACK options. When the sender is allowed to 
send a packet, it retransmits the next packet from the 
list of packets inferred to be missing at the receiver. If 
there are no such packets and the receiver's advertised 
window is sufficiently large, the sender sends a new 
packet. 
The sender exits Fast Recovery when a recovery 
acknowledgment is received acknowledging all data 
that was outstanding when Fast Recovery was entered. 

III. Comparisons of Tahoe, Reno and SACK TCP 

From [2], it can be seen that when there is only one 
segment dropped, Tahoe TCP goes into Slow Start after 
retransmit the lost segments and in the process of, the 
cwnd closes all the way to its initial value. In case of 
Reno and SACK TCP, the cwnd is reduced to half of 
the value it had before the error, their performances are 
better than Tahoe TCP. 
But when multiple segments are dropped from one 
window of data, Reno TCP has performance problems. 
These problems result from the need to await 
retransmission timer expiration before reinitiating data 
flow, because Reno TCP retransmits at most one 
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dropped packet per round-trip time. However, SACK 
TCP recovers without having to wait for a retransmit 
timeout, with the addition of selective 
acknowledgments and selective retransmission, a 
sender has a better idea of exactly which packets have 
been successfully delivered. Given such information, a 
sender can avoid unnecessary delays and 
retransmissions, resulting in improved throughput as 
compared to Reno TCP. 
Therefore, from above comparison, it has been deduced 
now that SACK TCP will be the best option to improve 
TCP performance. 

IV. Probing Device and Immediate Recovery 

We introduced a Probing Device for error detection and 
an Immediate Recovery strategy that is responsive to 
the nature of the error detected. 
Probing Device: a “Probe Cycle” [5] consists of a 
structured exchange of “probe” segments between the 
sender and the receiver that monitor network conditions. 
The sender enters a probe cycle after a time-out event 
happen. When the sender initiates a probe cycle during 
which data transmission is suspended and only probe 
segments (header without payload) are sent. A lost 
probe or acknowledgment will not cause TCP time-out 
extension, instead, reinitiates the cycle. The probe cycle 
terminates when network condition have improved 
sufficiently that the sender can make two successive 
round-trip time (RTT) measurements from the network. 
Hence suspending data transmission for the duration of 
the error, when the probe cycle is completed, the sender 
compares the measured probe RTTs and determines the 
level of congestion. Had congestion been the possible 
cause of the drop, the sender would have applied a 
Slow Start. The enhanced error detection mechanism 
allows for “Immediate Recovery” (full-window 
recovery) when the error is detected to be transient. 
Hence, a Probing Device models two properties: (i) it 
inspects the network load whenever time-out event is 
detected and rules on the cause of that error and, (ii) it 
suspends data transmission till the end of probe cycle, 
thereby forcing the sender to adapt its data transmission 
rate to the actual conditions of the channel. 
Immediate Recovery: That is, neither the congestion 
window nor the Slow Start threshold is adjusted 
downwards. Time-out values during probing are also 

not adjusted. 
The logic here is that having sat out the error condition 
during the probe cycle and finding that network 
throughput is improved at the end of the probe cycle, an 
aggressive transmission is more clearly indicated. The 
Immediate Recovery avoids the Slow Start and/or the 
congestion avoidance phase, immediately adjusts the 
congestion window to the recorded value prior to the 
initiation of the probe cycle. 

V. Proposal 

We know that SACK TCP perform the best as 
compared to Tahoe and Reno TCP when dropped 
packets are less than the half of window. However we 
can see from [3], if more than half a window of data is 
lost, SACK TCP will result in a retransmit timeout, 
and followed by a Slow Start. This sequential events 
underutilizes the network over several round-trip 
times, has an effect on TCP throughput, which results 
in SACK TCP performance degradation. 
Rather than passively wait for retransmit timeout 
followed by a Slow Start, actively distinguish network 
nature of error: transient error or persistent error, then 
implements different error recovery strategy Slow 
Start and Immediate Recovery respectively to 
transient error or persistent error for further improving 
SACK TCP throughout when multiple packets drop in 
a window of data. So we propose that SACK TCP 
combines with Probing Device. 

SACK

lost>1/2 CWND

Probe1

Probe2

Rtt1&Rtt2<
Best_Rtt

Immediate
Recovery

Slow Start

NoYes

Probe1_ACK Timeout

Probe2_ACK

 
Fig 1.  SACK TCP with Probing Device 

VI. Simulation 

Our simulations were run with OPNET Modeler, with 
from 10 to 11 packets dropped within a window of 
data. The simulated scenario is shown in Figure 2. 
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Fig 2.  Simulation Scenario 

It has two stations: a client and a server connected by 
a 1.5 Mbps line. In between the two stations is a 
packet discarder that discards packets going through it. 
The value of the number of packets to be discarded is 
set at the start of the simulation. We have set the 
packet discarder to drop 10 and 11 packets in a 0.5 sec 
period. We use the existing TCP model provided in 
OPNET. The scenario is set to simulate a 1.6 MB file 
transfer from server to client using FTP. The main 
statistics gathered were the TCP congestion window 
size for the server. 
The Congestion Window comparison of SACK TCP 
with 10 and 11 segment drops is shown in Figure 3.  

 
Figure 3. SACK TCP Congestion Window 

comparison with 10 and 11 drops 
 

 
Figure 4.  Congestion Window comparison 

with 11 drops: SACK with Probing and SACK 
From Figure 3, we can observe that SACK TCP takes a 

considerably more time to recover from 11 (more than 
half a window) segments are dropped. 
From Figure 4, it can be seen that SACK with Probing 
Device give a reduced congestion window recovery 
time when there is 11 segments drop as compared with 
original SACK. SACK with Probing Device after 
time-out event, paused the data transmission and 
entered in probing cycle. Once detected Rtt1&Rtt2≤
Best_Rtt and resumed transmission with Immediate 
Recovery. The congestion window was adjusted 
upward immediately since the error was considered to 
be transient. As expected, the SACK with Probing 
Device recovers from 11 segments drop without having 
to wait for a retransmit timeout. 

VII. Conclusion  

In this paper, we compared Tahoe, Reno and SACK 
TCP and showed that SACK TCP works best when 
multiple packets are lost from less than half a window. 
Then a modification was proposed to SACK TCP, 
SACK TCP was in conjunction with Probing Device, 
to improve SACK TCP performance when more than 
half a window of data lost. We compared its behavior 
to original SACK TCP, and results show that the 
modified version performed better as expected. 
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