

제21회 한국정보처리학회 춘계학술발표대회 논문집 제11권 제1호 (2004. 5)

1355

SACK TCP with Probing Device

Bing Liang Choong Seon Hong

School of Electronics & Information, Kyung Hee University

bing@networking.khu.ac.kr, cshong@khu.ac.kr

Abstract

This paper describes a modification to the SACK (Selective Acknowledgement) Transmission Control Protocol’s
(TCP), called SACK TCP with Probing Device, SACK works in conjunction with Probing Device, for improving
SACK TCP performance when more than half a window of data lost that is typical in handoff as well as unreliable
media. It shows that by slightly modifying the congestion control mechanism of the SACK TCP, it can be made to
better performance to multiple packets lost from one window of data.
Keywords: congestion control, congestion window, retransmission timeout, error detection, error recovery.

I. Introduction

Current implementations of TCP use an
acknowledgment number field that contains a
cumulative acknowledgment, indicating the TCP
receiver has received all of the data up to the indicated
byte. A selective acknowledgment (SACK) option
allows receivers to additionally report non-sequential
data they have received. When coupled with a selective
retransmission policy implemented in TCP senders,
considerable savings can be achieved.
In this paper, we illustrate SACK TCP performs the
best when less than half a window of data lost as
comparison with Tahoe and Reno TCP. So we will then
suggest a simple probing Device and an Immediate
Recovery strategy are grafted into SACK TCP, which is
responsive to the detected error conditions by
alternating Slow Start and Immediate Recovery, in
order to improve SACK TCP performance when more
than half a window of data lost, and compare its results
with the unmodified version.

This work is supported by University ITRC project of
MIC.

II. Tahoe, Reno and SACK TCP

Tahoe TCP: Tahoe TCP congestion control algorithm
includes Slow Start, Congestion Avoidance,
and Fast Retransmit [4]. It also implements an
RTT-based estimation of the retransmission timeout. In
the Fast Retransmit mechanism, a number of
Successive (the threshold is usually set at three),
duplicate acknowledgments (dup ACKs) carrying the
same sequence number triggers a retransmission
without waiting for the associated time-out event to
occur. The window adjustment strategy for this “early
time-out” is the same as for the regular time-out: Slow
Start is applied. The problem, however, is that Slow
Start is not always efficient, especially if the error was
purely transient or random in nature, and not persistent.
In such a case the shrinkage of the congestion window
is, in fact, unnecessary, and renders the protocol unable
to fully utilize the available bandwidth of the
communication channel during the subsequent phase of
window re-expansion.
Reno TCP: The Reno TCP modified the Fast
Retransmit of Tahoe TCP to include Fast Recovery.
The new algorithm prevents the communication path
(“pipe”) from going empty after Fast Retransmit,
thereby avoiding the need to Slow Start to re-fill it after

제21회 한국정보처리학회 춘계학술발표대회 논문집 제11권 제1호 (2004. 5)

1356

a single packet loss. Fast Recovery operates by
assuming each dup ACK received represents a single
packet having left the pipe. Thus, during Fast Recovery
the TCP sender is able to make intelligent estimates of
the amount of outstanding data.
A TCP sender enter Fast Recovery after the threshold
of dup ACKs is received, the sender retransmits one
packet and reduces its congestion window by one half.
Instead of Slow Start, as is performed by a Tahoe TCP
sender, the Reno TCP sender uses additional incoming
dup ACKs to clock subsequent outgoing packets.
In Reno TCP, the sender' s usable window becomes
min (awin, cwnd + ndup) where awin is the receiver' s
advertised window, cwnd is the sender' s congestion
window, and ndup is maintained at 0 until the number
of dup ACKs reaches threshold, and thereafter tracks
the number of duplicate ACKs. Thus, during Fast
Recovery the sender “inflates” its window by the
number of dup ACKs it has received, according to the
observation that each dup ACK indicates some packet
has been removed from the network and is now cached
at the receiver. After entering Fast Recovery and
retransmit a single packet, the sender effectively waits
until half a window of dup ACKs have been received,
and then sends a new packet for each additional dup
ACK that is received. Upon receipt of an ACK for new
data, the sender exits Fast Recovery by setting ndup to
0.
Reno TCP's Fast Recovery algorithm is optimized for
the case when a single packet is dropped from a
window of data. The Reno TCP sender retransmits at
most one dropped packet per round-trip time. Reno
TCP significantly improves upon the behavior of Tahoe
TCP when a single packet is dropped from a window of
data, but can suffer from performance problems when
multiple packets are dropped from a window of data.
SACK TCP: The SACK option follows the format in
[1]. From [1], the SACK option field contains a number
of SACK blocks, where each SACK block reports a
non-contiguous set of data that has been received and
queued. The first block in a SACK option is required to
report the data receiver's most recently received
segment, and the additional SACK blocks repeat the
most recently reported SACK blocks.
The congestion control algorithms in our SACK TCP

are a conservative extension of Reno TCP's congestion
control. The main difference between the SACK TCP
and the Reno TCP is in the behavior when multiple
packets are dropped from one window of data.
As in Reno TCP, the SACK TCP enters Fast Recovery
when the data sender receives threshold dup ACKs.
The sender retransmits a packet and cuts the congestion
window in half. During Fast Recovery, SACK TCP
maintains a variable called pipe that represents the
estimated number of packets outstanding in the path.
(This differs from the mechanisms in the Reno TCP.)
The sender only sends new or retransmitted data when
the estimated number of packets in the path is less than
the congestion window. The variable pipe is
incremented by one when the sender either sends a new
packet or retransmits an old packet. It is decremented
by one when the sender receives a dup ACK packet
with a SACK option reporting that new data has been
received at the receiver.
Use of the pipe variable decouples the decision of when
to send a packet from the decision of which packet to
send. The sender maintains a data structure, the
scoreboard that remembers acknowledgments from
previous SACK options. When the sender is allowed to
send a packet, it retransmits the next packet from the
list of packets inferred to be missing at the receiver. If
there are no such packets and the receiver's advertised
window is sufficiently large, the sender sends a new
packet.
The sender exits Fast Recovery when a recovery
acknowledgment is received acknowledging all data
that was outstanding when Fast Recovery was entered.

III. Comparisons of Tahoe, Reno and SACK TCP

From [2], it can be seen that when there is only one
segment dropped, Tahoe TCP goes into Slow Start after
retransmit the lost segments and in the process of, the
cwnd closes all the way to its initial value. In case of
Reno and SACK TCP, the cwnd is reduced to half of
the value it had before the error, their performances are
better than Tahoe TCP.
But when multiple segments are dropped from one
window of data, Reno TCP has performance problems.
These problems result from the need to await
retransmission timer expiration before reinitiating data
flow, because Reno TCP retransmits at most one

제21회 한국정보처리학회 춘계학술발표대회 논문집 제11권 제1호 (2004. 5)

1357

dropped packet per round-trip time. However, SACK
TCP recovers without having to wait for a retransmit
timeout, with the addition of selective
acknowledgments and selective retransmission, a
sender has a better idea of exactly which packets have
been successfully delivered. Given such information, a
sender can avoid unnecessary delays and
retransmissions, resulting in improved throughput as
compared to Reno TCP.
Therefore, from above comparison, it has been deduced
now that SACK TCP will be the best option to improve
TCP performance.

IV. Probing Device and Immediate Recovery

We introduced a Probing Device for error detection and
an Immediate Recovery strategy that is responsive to
the nature of the error detected.
Probing Device: a “Probe Cycle” [5] consists of a
structured exchange of “probe” segments between the
sender and the receiver that monitor network conditions.
The sender enters a probe cycle after a time-out event
happen. When the sender initiates a probe cycle during
which data transmission is suspended and only probe
segments (header without payload) are sent. A lost
probe or acknowledgment will not cause TCP time-out
extension, instead, reinitiates the cycle. The probe cycle
terminates when network condition have improved
sufficiently that the sender can make two successive
round-trip time (RTT) measurements from the network.
Hence suspending data transmission for the duration of
the error, when the probe cycle is completed, the sender
compares the measured probe RTTs and determines the
level of congestion. Had congestion been the possible
cause of the drop, the sender would have applied a
Slow Start. The enhanced error detection mechanism
allows for “Immediate Recovery” (full-window
recovery) when the error is detected to be transient.
Hence, a Probing Device models two properties: (i) it
inspects the network load whenever time-out event is
detected and rules on the cause of that error and, (ii) it
suspends data transmission till the end of probe cycle,
thereby forcing the sender to adapt its data transmission
rate to the actual conditions of the channel.
Immediate Recovery: That is, neither the congestion
window nor the Slow Start threshold is adjusted
downwards. Time-out values during probing are also

not adjusted.
The logic here is that having sat out the error condition
during the probe cycle and finding that network
throughput is improved at the end of the probe cycle, an
aggressive transmission is more clearly indicated. The
Immediate Recovery avoids the Slow Start and/or the
congestion avoidance phase, immediately adjusts the
congestion window to the recorded value prior to the
initiation of the probe cycle.

V. Proposal

We know that SACK TCP perform the best as
compared to Tahoe and Reno TCP when dropped
packets are less than the half of window. However we
can see from [3], if more than half a window of data is
lost, SACK TCP will result in a retransmit timeout,
and followed by a Slow Start. This sequential events
underutilizes the network over several round-trip
times, has an effect on TCP throughput, which results
in SACK TCP performance degradation.
Rather than passively wait for retransmit timeout
followed by a Slow Start, actively distinguish network
nature of error: transient error or persistent error, then
implements different error recovery strategy Slow
Start and Immediate Recovery respectively to
transient error or persistent error for further improving
SACK TCP throughout when multiple packets drop in
a window of data. So we propose that SACK TCP
combines with Probing Device.

SACK

lost>1/2 CWND

Probe1

Probe2

Rtt1&Rtt2<
Best_Rtt

Immediate
Recovery

Slow Start

NoYes

Probe1_ACK Timeout

Probe2_ACK

Fig 1. SACK TCP with Probing Device

VI. Simulation

Our simulations were run with OPNET Modeler, with
from 10 to 11 packets dropped within a window of
data. The simulated scenario is shown in Figure 2.

제21회 한국정보처리학회 춘계학술발표대회 논문집 제11권 제1호 (2004. 5)

1358

Fig 2. Simulation Scenario

It has two stations: a client and a server connected by
a 1.5 Mbps line. In between the two stations is a
packet discarder that discards packets going through it.
The value of the number of packets to be discarded is
set at the start of the simulation. We have set the
packet discarder to drop 10 and 11 packets in a 0.5 sec
period. We use the existing TCP model provided in
OPNET. The scenario is set to simulate a 1.6 MB file
transfer from server to client using FTP. The main
statistics gathered were the TCP congestion window
size for the server.
The Congestion Window comparison of SACK TCP
with 10 and 11 segment drops is shown in Figure 3.

Figure 3. SACK TCP Congestion Window

comparison with 10 and 11 drops

Figure 4. Congestion Window comparison

with 11 drops: SACK with Probing and SACK
From Figure 3, we can observe that SACK TCP takes a

considerably more time to recover from 11 (more than
half a window) segments are dropped.
From Figure 4, it can be seen that SACK with Probing
Device give a reduced congestion window recovery
time when there is 11 segments drop as compared with
original SACK. SACK with Probing Device after
time-out event, paused the data transmission and
entered in probing cycle. Once detected Rtt1&Rtt2≤
Best_Rtt and resumed transmission with Immediate
Recovery. The congestion window was adjusted
upward immediately since the error was considered to
be transient. As expected, the SACK with Probing
Device recovers from 11 segments drop without having
to wait for a retransmit timeout.

VII. Conclusion

In this paper, we compared Tahoe, Reno and SACK
TCP and showed that SACK TCP works best when
multiple packets are lost from less than half a window.
Then a modification was proposed to SACK TCP,
SACK TCP was in conjunction with Probing Device,
to improve SACK TCP performance when more than
half a window of data lost. We compared its behavior
to original SACK TCP, and results show that the
modified version performed better as expected.

References

[1]. M.Mathis, J.Mahdavi, S.Floyd, A.Romanow, TCP
selective acknowledgment options, IETF RFC 2018,
1996
[2]. Kevin Fall and Sally Floyd, Simulation-based
Comparisons of Tahoe, Reno, and SACK TCP,
Computer Communication Review, 1996
[3]. M. N. Akhtar, M. A. O. Barry and H. S.
AI-Raweshidy, Modified Tahoe for Wireless Networks
Using OPNET Simulator
[4]. Matthew Mathis and Jamshid Mahdavi, Forward
Acknowledgment: Refining TCP Congestion Control,
Proceedings of SIGCOMM'96, August 1996
[5]. A. Lahanas and V. Tsaoussidis, Improving the
Performance of TCP in networks with Wireless
Components using Probing Devices, IEEE WCNC,
March 2002
[6]. A. Lahanas and V. Tsaoussidis, Behavior of
TCP-Probing with Hand-offs, CSREA, June 2001

