Evaluation of Visible Implant Fluorescent Elastomer Tag in Greenling, *Hexagrammos otakii* Jordan and Starks

In -Seok Park[†] and Iraida Germogenovna Syasina[†]

Division of Ocean Science, College of Ocean Science and Technology,
Korea Maritime University, Busan 606-791, Korea

*Institute of Marine Biology, Far Eastern Branch of Russian Academy of Science,
Vladivostok 690-041, Russia

Survival, growth and mark retention were compared among the control and five treatment groups of greening *Hexagrammos otakii* (Mean body length±SD: 21.0±1.4 cm; mean body weight±SD: 154.4±13.8 g) marked with visible implant fluorescent elastomer (VIFE). Marks did not affect survival and growth of greenling during the togging period of 20-month. Greenling retained greater than 90% tag retention rate in surface of the dorsal fin base. The VIFE tagging technique is a reliable and relatively inexpensive marking method for the identification of individual greenling in the experimental studies.

Retention rate (%) of visible implant fluorenscent elastomer (VIFE) tags in each sites of greenling. Hexagrammos otakii (Jordan and Starks) from 0 to 29 months after VIFE tagging

	Tag retention (%)						
Month	Adipose eyelid	Surface		Inside surface			
		Dorsal fin base	Anal fin base	Pectoral fin base	Pelvic fir Base		
0	100.0±0.0	100.0±0.0	100.0±0.0	100.0±0.0	100.0±0.0		
2	92.8 ± 4.2^{a}	99.3±1.8 ^b	98.9±2.1 ^b	95.8±3.7 ^a	97.1±3.5 ^t		
4	90.7±3.5 ^a	99.0±1.9 ^b	95.6±1.9 ^b	91.4±3.5°	97.1±3.5 ^t		
6	86.1±3.0 ^a	98.9±2.1 ^b	95.6±1.9 ^b	90.9 ± 2.9^{a}	95.6±1.8 ^t		
8	81.7±2.9 ^a	98.9±2.1 ^b	93.8±2.5°	87.4 ± 2.1^{c}	94.5±2.7 ^t		
10	71.9±3.1 ^a	98.7±3.2 ^b	93.8±2.5°	85.2 ± 1.8^{d}	90.6±2.0°		
12	70.1 ± 2.7^{a}	98.7±3.2 ^b	90.9±2.0°	85.2±1.8°	88.7±2.5°		
14	68.0±1.1 ^a	94.5±2.7 ^b	89.3±1.7°	80.7 ± 1.9^{d}	88.7±2.5°		
16	65.6±2.1 ^a	93.1±1.8 ^b	89.3±1.7°	80.7 ± 1.9^{c}	85.0±2.0°		
18	65.0±3.8 ^a	92.6±2.2 ^b	85.0±1.0°	77.2 ± 2.0^{d}	82.4±1.6		
20	62.7±3.6 ^a	92.6 ± 2.2^{b}	84.8±1.3°	75.4±2.4 ^d	78.6±1.5°		

^{*}Values (Means \pm SEM of triplication) with different superscripts in raw indicate significant differences (P<0.05). Tag retention rate (%) is based on the original number of tagging fish (n=50).

^{*}Corresponding author: ispark@kmaritime.ac.kr

Survival (%) and growth in greenling, Hexagrammos otakii (Jordan and Starks) from 0 to 20 month after visible implant fluoenscent elastomer (VIFE) tagging.

Month		Survival	Growth		
	Group	(%)	Body length (cm)	Body weight (g)	
0	Cont.	100.0±0.0	21.0±1.4	154.4±16.8	
	Exp.	100.0±0.0	21.0±1.4	154.4±16.8	
2	Cont.	100.0±0.0	26.9±1.4	249.0±19.7	
	Exp.	98.7±1.2	27.6±1.5	255.7±21.2	
4	Cont.	99.3±1.2	30.3±1.6	311.5±22.3	
	Exp.	98.7±1.2	31.4±1.5	320.4±19.9	
6	Cont.	98.0±0.0	33.0±2.0	362.7±24.1	
	Exp.	97.3±1.2	34.8±1.8	375.4±20.8	
8	Cont.	95.3±1.2	35.2±2.1	408.0±29.8	
	Exp	94.7±1.2	37.1±1.9	419.2±25.6	
10	Cont.	92.0±0.0	37.1±2.0	444.3±30.7	
	Exp	92.7±0.5	37.8±2.6	440.9±30.8	
12	Cont.	91.3±1.2	38.7±2.2	467.6±32.7	
	Exp	92.3±0.6	38.2±1.9	452.1±32.0	
14	Cont.	90.0±0.0	39.0±2.3	485.6±35.9	
	Exp	88.7±1.2	40.3±2.7	497.7±32.3	
16	Cont.	87.3±1.2	40.1±3.1	490.0±33.5	
	Exp.	88.0±0.0	42.3±2.9	512.3±35.7	
18	Cont.	86.0±0.0	41.2±3.3	498.8±29.1	
	Exp.	87.3±1.2	40.9±3.1	520.1±36.2	
20	Cont.	85.3±1.2	41.4±3.7	505.9±31.7	
	Ехр.	86.0±0.0	43.2±3.5	527.4±39.8	

Values (means±SEM of triplication). None of criteria measured was not significantly different between control and experimental group (P>0.05).

References

Bergman, P.K., F. Haw, H.L. Blankenship and R.M. Buckley. 1992. Perspectives on design use, and misuse of fish tags. *Fisheries*, 17: 20-25.

Dewey, M.R. and S.J. Zigler. 1996. An evaluation of fluorescent elastomer for marking bluegills in experimental studies. *Prog. Fish-Cult.*, 58: 219-220.

Konstantinov, K.G. 1978. Modern methods of fish tagging. J. Ichthyol., 17: 924-938.

Park, I.-S., J.H. Jo, S.J. Lee, Y.A. Kim, K.E. Park, J.W. Hur, J.S. Yoo and Y.-C. Song. 2003. Anaesthetic effect of lidocaine hydrochoride-sodium bicarbonate and MS-222 on the greenling (*Hexagrammos otakii*). *J. Kor. Fish. Soc.*, 36: 449-453.

Willis, T.J. and R.C. Babcock. 1998. Retention and in situ detectability of visible implant fluorescent elastomer (VIFE) tags in *Pargus auratus* (Sparidae). *New Zealan J. Marine Freshwater Res.*, 32: 247-254.