기동하는 광대역 간섭신호에 견실한 미분 제한조건을 갖는 광대역 적응 빔형성

김정수*, 이형수*, 신창흥*, 이철목**, 이균경* *경북대학교 전자전기컴퓨터학부, **국방과학연구소

Robust Wideband Adaptive Beamforming with Derivative Constraints for Moving Wideband Interferences

Jeong Soo Kim*, Hyung Soo Lee*, Chang Hong Shin*, Chuł Mok Lee**, Kyun Kyung Lee* *School of Electrical Engineering and Computer Science, Kyungpook National University **Agency for Defense Development

E-mail: <u>kklee@ee.knu.ac.kr</u>

이 논문은 수중윰향특화센터와 2004년도 두뇌한국 21 사업에 의하여 지원되었음

요약

간섭신호가 광대역이거나 빠르게 기동할 경우 기존의 협대역 적응 빔형성(NABF: Narrowband Adaptive Beamforming)기법의 성능이 크게 저하되는 것으로 알려져 있다. 이는 간섭신호가 빠르게 기동할 경우 추정된 빔패턴의 닐(null)을 벗어나게 되고 협대역을 가정하여 얻어진 빔패턴의 널은 광대역 신호일 경우 이를 효과적으로 제거할 수 없기 때문이다. 이러한 환경에서 견실한 성능을 얻기 위해 NABF 기법에 미분제한조건을 주어 간섭신호 방향의 널 폭을 넓하는 기법이 알려져 있다. 본 논문에서는 광대역의 기동하는 간섭신호에 보다 견실하게 대처하기 위해 광대역 적응 빔형성 (WABF: Wideband Adaptive Beamforming)기법에 미분제한 조건을 적용하였다. 그리고 빠르게 기동하는 광대역 간섭신호가 존재하는 환경에서 모의실험을 수행하여 제안한 기법과 기존의 NABF 기법 성능을 비교한다.

1. 서론

적응 범형성기는 조향 방향의 신호는 왜곡없이 통과시키면서 간섭신호는 최대한 감쇄시키기 위해 적응 가중치 벡터를 만들고 센서출력을 이 벡터에 대해 가중 합을 하여 빔 출력을 얻는다. 그러나 적응 범형성기는 기동하는 간섭신호가 있을 경우 적응 가중치 벡터는 변화하는 상황에 충분히 빠르게 적응해야 하며 그렇지 못할 경우 간섭신호는 빔패턴의 널을 벗어나 조향 방향의 빔 출력 에너지에 영향을 주게 된다.[1] 적응 범형성기법의 경우 큰 에너지를 갖는 간섭에 대해 매우 좁은 널을 형성하므로 기동하는 간섭신호에 민감해진다. 또한 협대역을 가정한 적응 범형성기가 광대역의 간섭신호가 존재하는 환경에서 사용될 때 그 성능이 저하된다. 최근 이러한 문제를 개선하여 기동하는 간섭신호 뿐만 아니라 광대역의 간섭신호를 제거하기 위해 NABF 기법에 간섭신호가 위치하는 방향에 미분제한조건을 사용하여 널의 폭을 넓히는 방법이 사용되고 있다.[2,3]

그러나 이 방법은 NABF 기법을 기반으로 하므로 광대역 간섭신호 제거에는 어느 정도의 한계를 가진다. 이를 계선하기 위해 본 논문에서는 빠르게 기동하는 광대역 간섭신호를 견실하게 제거하기 위해 미분제한 조건을 갖는 WABF 기법을 재안한다.

본 논문은 1장 서른에 이어,2장에서 미분제한조건을 설명하고,3 장에서 미분제한조건을 갖는 WABF 기법을 소개하고,4 장에서 모의실험을 통해 제안한 기법의 성능을 평가하고 5장에서 결론을 맺는다.

2. 마분제한조건

(θ₁, θ₁,...,θ_Q) 에서 입사하는 Q(Q < M - 1) 개의 협대역 간섭신호와 θ_s에서 입사하는 1개의 협대역 표적신호가 M 개의 센서를 갖는 선배열 센서로 입사될 때, 선배열 센서출력은 확률적으로 독립이고 간섭신호와 표적 신호를 정지된 상태로 가정할 경우 *i* 번째 테이터 단편에서의 센서출력 벡터는 식 (1)과 같다.

$$\mathbf{y}(i) = \mathbf{A}\mathbf{s}(i) + s_{s}(i)\mathbf{a}(\theta_{s}) + \mathbf{n}(i)$$

$$\mathbf{A} = [\mathbf{a}(\theta_{1}), \mathbf{a}(\theta_{2}), \cdots, \mathbf{a}(\theta_{n})]$$
(1)

식 (1)에서 표적신호의 조향벡터 **a**(θ_s) 와 간섭신호의 조향벡터 **a**(θ₁), **a**(θ₂),..., **a**(θ_Q) 는 다음 식 (2)와 같이 정의 된다.

$$\mathbf{a}(\theta) = [\exp(jx_1\xi), \exp(jx_2\xi), \cdots, \exp(jx_M\xi)]^T$$

$$x_i = \sum_{i=1}^{i-1} d_{i,i+1}$$
(2)

단, ξ = (2π/λ) sinθ, λ는 파장이며, x_i는 *l* 번째 센서의 좌표이다. 그리고 d_{1,t+}는 *i* 번째와 *i*+1 번째 센서간의 거리이다. s(*i*) = [s₁(*i*), s₂(*i*),..., s_Q(*i*)]^T는 Q×1 의 랜덤한 간섭신호의 파형을 나타낸다. M×1 의 벡터 n(*i*) 는 랜덤 센서 잡음을 나타낸다.

M×M 의 간섭신호와 잡음에 의한 공분산행렬은 다음 식과 같다.

$$\mathbf{R} = \boldsymbol{\sigma}^2 \mathbf{I} + \mathbf{A} \mathbf{S} \mathbf{A}^H \tag{3}$$

단, **S** = *E*[s(*i*)s^{*H*}(*i*)] 는 *Q*×*Q* 차원의 간섭신호에 의한 공분산행렬이고 σ²는 센서 잡음의 평균 에너지이다.

정적 상태에서 만약 R 이 알려져 있다면 SINR(Signal to Interference plus Noise Ratio)을 최대로 하는 최적 가중치 벡터는 다음 식과 같다.

$$\mathbf{w}_{opt} = \alpha \mathbf{R}^{-1} \mathbf{a}_{s} \tag{4}$$

단, α는 조향방향의 이득을 조절하는 상수이다. 간섭신호가 표적신호나 센서 잡음에 비해 매우 큰 얘너지를 가진다면 다음의 식이 성립한다.[1]

$$\lim_{\sigma^2 \to 0} \sigma^2 \mathbf{R}^{-1} = \mathbf{P}_{\mathbf{A}}^{\perp} = \mathbf{I} - \mathbf{P}_{\mathbf{A}}$$
(5)

P_A = A(A[#]A)⁻¹A[#] 는 간섭신호의 부공간으로의 정사영(orthogonal projection)이다. **P**[⊥]_A 는 이의 직교 여공간(orthogonal complement)으로의 정사영이다.

식 (5)에 의해 식 (4)에서 얻어진 최적 가중치 벡터는 간섭신호의 부공간에 대해 직교가 되며 이를 삭 (6)으로 나타내었다.

$$\lim_{d \to 0} \mathbf{w}_{opt} \perp \{ \mathbf{a}(\theta_1), \mathbf{a}(\theta_2), \cdots, \mathbf{a}(\theta_Q) \}$$
(6)

식 (4)의 최적 가중치 벡터에 대한 빔페턴 w[#]_{σγ}a(θ)는 간섭신호가 존재하는 방향에 널을 만들며 널의 폭울 넓히기 위해 다음 식과 같은 미분제한조건을 준다.

$$\frac{\partial^{m}(\mathbf{w}^{H}\mathbf{a}(\theta))}{\partial\xi^{m}}\Big|_{\theta=\theta_{a}} = 0, \qquad \substack{n=1, 2, \cdots, Q\\m=1, 2, \cdots, P}$$
(7)

위 식을 다음 식과 같이 다시 쓸 수 있다

$$\mathbf{w} \perp \{\mathbf{B}^{\mathbf{m}} \mathbf{a}(\boldsymbol{\theta}_n)\}_{\substack{m=1,2,\cdots,p\\ n=1,2,\cdots,Q}}, \quad \mathbf{B} = \text{diag}\{x_1, x_2, \cdots, x_M\}$$
(8)

식 (8)을 만족하는 ₩ 를 얻기위해 M > (P+1)Q 를 가정한다. 만약, {B^ma(θ_n)}, m=0,1,...,P, n=1,2,...,Q 에 의해 생성(span)되는 부공간의 차원이 M 이 될 경우 직교여공간은 항상 영차원(null dimension)을 갖게 된다. 일반적으로 공분산행렬 R 과 간섭신호의 방향 θ_{n} 은 알려져 있지 않으며 데이터 단편 y(i) 만이 주어진다. INR(Interference-to-Noise Ratio)가 크고 신호의 크기 p_{s} 가 작을 경우 식 (9)와 같이 데이터 단편에 대한 정사영과 간섭신호 부공간에 대한 정사영은 같다.

$$\lim_{x^1 \to 0, p_X \to 0} \mathbf{P}_{\mathbf{Y}} = \mathbf{P}_{\mathbf{A}}$$
(9)

단, Y는 $M \times L$ 의 데이터 행렬이며 $L \ge Q$ 이다.

이러한 특성에 의해 σ²→0,*p_s*→0 일 때 식 (7)에서 *P*=0 인 경우를 포함하여 다음 식과 같이 나타낼 수 있다.

 $\mathbf{w} \perp \mathbf{y}(i), \mathbf{w} \perp \{\mathbf{B}^{m} \mathbf{y}(i)\}_{m=1,2,\dots,P}, \quad \forall i$ (10)

따라서 식 (9), (10)에 의해 간섭신호 방향에 대한 정보없이 데이터 단편으로 미분제한조건을 만족하는 적응 가중치 벡터를 추정할 수 있다.

3. 미분제한조건을 갖는 WABF 기법

광대역의 간섭신호를 효과적으로 제거하기 위해 앞 절에서의 미분제한조건을 WABF 기법에 적용한다. WABF 기법에서는 데이터 단편으로 기존의 시간 영역 데이터 대신 주과수 영역에서 특정대역의 주파수 빈을 이용한다. 이를 위해 센서 출력신호 y(i)를 DFT 하여 얻어진 주파수 빈 y_k 를 얻는다. 그리고 y_k 를 해당 되는 주파수 f_k 에 대해 미리 특정방향 θ_0 로 조항하여 그 방향에 대해서 주파수 독립이 되는 $y_k(\theta_0)$ 와 행렬 $Y(\theta_0)$ 를 다음 식과 같이 얻는다. [4,5]

$$\mathbf{Y}(\theta_0) = [\mathbf{y}_1(\theta_0), \mathbf{y}_2(\theta_0), \cdots, \mathbf{y}_k(\theta_0)]$$

$$\mathbf{y}_k(\theta_0) = \mathbf{D}(\theta_0, f_k) \mathbf{y}_k$$
(11)

단, D(θ₀, f_k)=diag{D₁,...,D₁,...,D_M} 는 위상지연행렬 이며, D₁=exp(-j2π_kx_isinθ/c)는 I 번째 센서에 대한 위상 변환을 나타낸다. 그리고 c 는 매질에서의 전파되는 속도이며, K는 사용된 주파수 빈의 수이다.

미분제한조건을 갖는 광대역 적응 가중치 벡터 ₩_{WDC}(θ₀)는 식 (10)을 이용하면 다음 식 (12)와 같다.

$$\mathbf{w}_{WDC}(\theta_0) \perp \mathbf{y}_k(\theta_0),$$

$$\mathbf{w}_{WDC}(\theta_0) \perp \{ \mathbf{B}^n \mathbf{y}_k(\theta_0) \}_{m=1,2,\cdots,P}, \ k = 1, 2, \cdots, K$$
(12)

식 (12)에서 *P*=1일 경우 이를 만족하는 적응 가중차 백터 w_{#DC}(θ₀)는 다음 식과 같이 구해진다.

$$\hat{\mathbf{w}}_{WDC}(\theta_0) = \frac{\hat{\mathbf{R}}_{WDC}^{-1}(\theta_0)\mathbf{1}_M}{\mathbf{1}_M^H \hat{\mathbf{R}}_{WDC}^{-1}(\theta_0)\mathbf{1}_M}$$
(13)
$$\hat{\mathbf{R}}(\theta_0) = \frac{1}{K} \left(\mathbf{Y}(\theta_0)\mathbf{Y}(\theta_0)^H + \zeta \mathbf{B} \mathbf{Y}(\theta_0)\mathbf{Y}(\theta_0)^H \mathbf{B} \right)$$

여기서 여기서 여기서 수 미분조건의 영향을 조절하는 인자이다.

그림 1. 7에 대한 최대 허용 성능 손실

성능 손실이 주어졌을 때 ζ 값을 결정하기 위해 다음 식 (14)를 *M* = 8,16,32,64,128 에 대해 10log₁₀(ƒ(ζ))로 그런 것이 그림 1 이며, 센서 개수에 관계없이 하나의 곡선처럼 보인다. 이는 ζ 값에 따른 최대 허용 성능손실은 센서개수와는 무관함을 나타낸다.[1]

$$f(\zeta) = M \left(M - 4\zeta \sum_{l=1}^{M/2} \frac{(l-1/2)^2}{\rho^2 + \zeta(l-1/2)^2} + 2\zeta^2 \sum_{l=1}^{M/2} \frac{(l-1/2)^4}{(\rho^2 + \zeta(l-1/2)^2)^2} \right) / \left(M - 2\zeta \sum_{l=1}^{M/2} \frac{(l-1/2)^2}{\rho^2 + \zeta(l-1/2)^2} \right)^2, \quad \rho = \sqrt{(M^2 - 1)/12}$$
(14)

예를 들어 최대 허용 성능 손실을 1dB 로 하였을 경우,그림 1에 의해 ζ≈1.5로 결정된다.

모의실험

제안한 기법의 성능을 검증하기 위해 표 1 과 같이 3 개의 광대역 표적이 50 초 동안 기동하는 환경을 가정하였다. 특히, 표적 I 은 나머지 표적에 비해 큰 에너지를 갖고 비교적 빠르게 기동하도록 설정하였으며 이들의 기동하는 궤적은 그림 2 에 나타내었다. 그림

표 1. 표적 정보

주파수선	117,136,156,175,194 [Hz]
SNR	5 [dB]
궤적	$\theta_1 = -40^\circ - 6^\circ \cos(2\pi \cdot 0.1t)$
주파수선	100,123,147,170,193 [Hz]
SNR	0 [dB]
궤적	$\theta_2 = 5^\circ \cos(2\pi \cdot 0.03t)$
주파수선	111,133,154,176,197 [Hz]
표적 III SNR	0 [dB]
궤적	$\theta_3 = 30^\circ + 5^\circ \sin(2\pi \cdot 0.04t)$
	주파수선 SNR 궦적 주파수선 SNR 귀작 주파수선 SNR 제적

그림 2. 표적 I, II, III의 궤적

3 은 식 (13)에서 ζ=0인 WABF 기법과 NABF 기법, **८≃**1.5 인 RNABF(Robust NABF)기법과 그리고 제안한 RWABF(Robust WABF)기법을 적용한 광대역 에너지를 시간파 방위각에 대해 그린 것이다. 그림 3(b) 의 경우 다른 3 가지 기법에 비해 궤적의 에너지 크기가 일정하다. 이는 빠른 간섭신호가 존재하는 경우에서 보다 안정적인 빔 출력을 얻을 수 있음을 나타낸다. 그러나 그림 3(b)는 널의 폭을 넓힐 때 생기는 성능손실로 인해 그림 3(a)에 비해 상대적으로 빔 폭이 넓다. 그림 4 는 빠르게 기둥하는 표적 I 주변의 2 개의 방향에 대한 빔출력을 나타낸 것이다. -59°, -24° 방향에는 표적이 존재하지 않으므로 최소의 에너지가 관측되어야 하며 그 크기가 일정한 것이 이상적이다. 이러한 관점에서 *로 표시된 제안된 기법이 빠른 광대역 간섭신호를 가장 견실하게 제거함을 알 수 있다.

5. 겷 론

본 논문에서는 광대역의 간섭신호가 빠르게 기동할 때 이를 보다 견실하게 제거하기 위해 미분제한조건을 갖는 WABF 기법을 제안하였다. 모의실혐을 통해 빠르게 기동하는 광대역 간섭신호에 대한 제거성능을 비교해 본 결과 제안한 기법이 미분제한조건을 갖는 NABF 기법을 포함한 다른 기법에 비해 우수함을 확인하였다. 그리고 빠르게 기동하는 표적에 대한 빔 출력의 경우도 제안한 기법이 다른 기법에 비해 안정적인 것을 알 수 있다.

참고문헌

- A. B. Gershman, U. Nickel, and J. F. Böhme, "Adaptive beamforming algorithms with robustness against jammer motion," *IEEE Trans. Signal Processing*, vol. 45, pp. 1878-1885, July 1997.
- [2] A. B. Gershman, G. V. Serebryakov, and J. F. Böhme, "Constrained Hung-Turner adaptive beamforming algorithm with additional robustness to wideband and moving jammers," *IEEE Trans. Antennas Propagat.*, vol. 44, pp. 361-367, Mar. 1996.

- [3] M. Agrawal and S. Prasad, "Robust adaptive beamforming for wide-band, moving, and coherent jammers via uniform linear arrays," *IEEE Trans. Antennas Propagat.*, vol. 47, pp. 1267-1275, Aug. 1999.
- [4] J. Krolik and D. Swingler, "Multiple broadband source location using steered covariance matrices." *IEEE Trans.*

Acoust., Speech, Signal Processing, vol. 37, pp.1481-1494, Oct. 1989.

[5] D. N. Swingler, "A low-complexity MVDR beamformer for use with short observation times," *IEEE Trans., Signal Processing*, vol. 47, No. 4, pp. 1154-1160, Apr. 1999.

그림 3. 각 기법의 광대역 궤적 (a) WABF기법 (b) RWABF기법 (c) NABF기법 (d) RNABF기법

그림 4. 각 기법의 부엽준위에 의한 영향 (a) -59° 방향 (b) -24° 방향