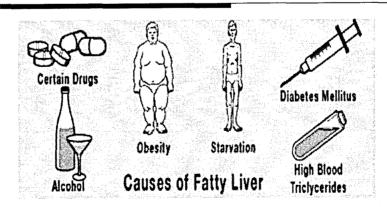
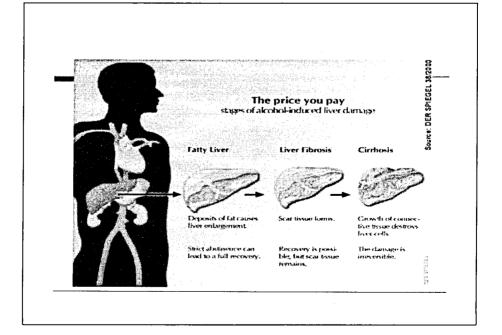

Development of Health Functional Food for Fatty Liver from Traditional Herb

Dept. Hygienic Chemistry College of Pharmacy Kyung Hee University Se Young Choung

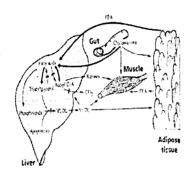

Differences between health functional food and drug

	Health functional food	Drug
Subject	Healthy man	Patient
Sample State	Extract, Fraction	Single component
Aim	Maintain and improvement of health, Risk reduction	Treatment of disease
Effect	Mild	Potent
Treatment period	Long	Short
Toxicity	Very low or none	Low toxicity (known)

Fatty Liver?


- ❖ Accumulation of lipid within hepatocytes
- ❖ Total lipid exceeding 5% of liver weight (Over 50% of the excess fat deposit in the liver is TG)
- Adult Men 30%, Women 15% (ref. Korea National Statistical Office '1995)
- **❖** In the US Steatosis affects approximately 25% of the general population

Risk Factors



Alcoholic Fatty Liver?

- The amount of alcohol consumed (how much and how often) determines the risk and the degree of liver damage
- In the US: 15.3 million people in US abuse or depend on alcohol.
 Fatty liver develops in 90-100% of patients with heavy alcohol use
- In northern Italy: Prevalence rates of steatosis in 46.4% of heavy drinkers (>60 g/d of alcohol) and in 94.5% of obese heavy drinkers (Bellentani et al. Ann Intern Med. 2000)

Mechanism of Fatty Liver

- Fatty acid beta-oxidation in mitochondrial ↓
- 2) Endogenous fatty acid synthesis †
- 3) Enhanced delivery of fatty acids to the liver
- 4) Deficient incorporation or export of triglycerides as VLDL

SungKangWon

Composition

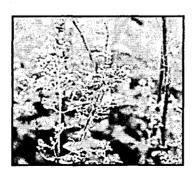
- ✓ Astragalus membranaceus
- ✓ Salvia miltiorrhiza
- ✓ Pueraria lobata

Astragalus membranaceus

- ☐ Family; Leguminosae
- ☐ Part used; root
- ☐ Common name; Huang Qi

Effects of Astragalus membranaceus

- ☐ Liver fibrosis and hepatic collagenolysis by reverse chemical-induced. (Li et al. Life Sci. 2003)
- ☐ CCl₄ induced liver damage in rats was reduced.


 (Fu et al. Zhongguo Zhong Xì Yì Jie He Za Zhi. 1992)
- ☐ Protecting against liver fibrosis.

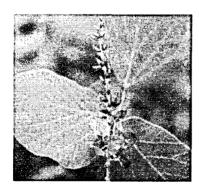
(Li et al. Am J Chin Med. 1998)

☐ Reducing blood lipoprotein → antiatherosclerosis

(Lu et al. Zhongguo Zhong Xì Yì Jie He Za Zhi. 1994)

Salvia miltiorrhiza

- ☐ Family; Labiatae
- ☐ Part used; root
- ☐ Common name; Danshen


Effects of Salvia miltiorrhiza

- ☐ Delay acquisition of alcohol drinking behavior by dosedependently. (Brunetti et al. J Ethnopharmacology. 2003)
- ☐ Inhibition of biliary obstruction-induced hepatocyte apoptosis by cytoplasmic sequestration of p53.

(Oh et al. Toxicol Appl Pharmacol. 2002)

☐ Amelioration of carbon tetrachloride-induced hepatic fibrosis (Chen et al. Zhonghua Gan Zang Bing Za Zhi. 2002)

Pueraria lobata

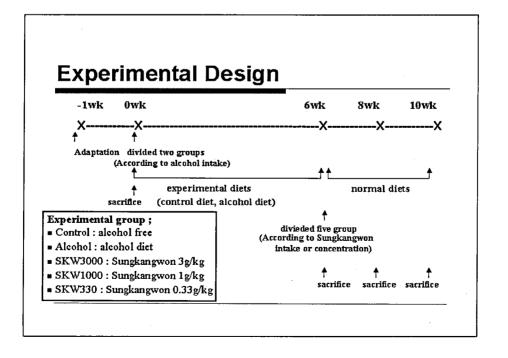
- ☐ Family; Leguminosae
- ☐ Part used; root
- □ Common name; Kudzu

Effects of Pueraria lobata

- ☐ Reducing ALT in hepatocytes better than glycyrrhizin

 (Arao et al. Biol Pharm Bull. 1997)
- ☐ Daidzin delays and decreases peak blood alcohol levels and shortens sleep time induced by ethanol intoxication.

(Xie et al. Alcohol Clin Exp Res. 1994)


☐ Scavenging DPPH radical and inhibiting lipid peroxidation.

(Sato et al. Chem Pharm Bull (Tokyo). 1992)

Purpose of Study

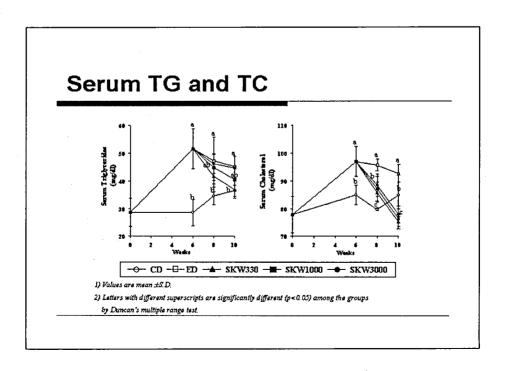
To investigate the effect of Sungkangwon (Astragali membranaceus Bunge + Puerariae lobata Ohwi + Salviae miltiorrhiza Bunge) on fatty liver induced by alcohol diet

Materials and Methods

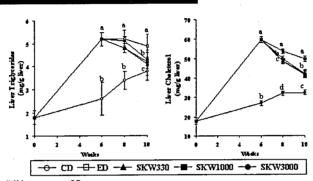
Composition of experimental diets

(Lieber-DeCarli Liquid Diet)

Ingredients	Control	Alcohol
Casein	41.40	41.40
DL-Methionine	0.30	0.30
L-Cystine	0.50	0.50
Cellulose	10.00	10.00
Maltose Dextrin	25.60	115.20
Corn Oil	8.50	8.50
Olive Oil	28.40	28.40
Safflower Oil	2.70	2.70
Mineral Mix *	8.75	8.75
Vitamin Mix b	2.50	2.50
Choline Bitartrate	0.53	0.53
Xanthan Gum	3.00	3.00
Ethanol	-	45.5


a: AIN-76 Mineral mix; Dyets, Bethlehem, Pennsylvania, USA

Laboratory Analyses


- Serum
- ✓ Triglycerides ; Commercial Kit
- ✓ Total cholesterol; Commercial Kit
- ✓ HDL-C; Commercial Kit
- ✓ LDL-C, VLDL-C; Calculation by Friedewald method
- ✓ AST, ALT; Commercial Kit
- ✓ Hepatic lipase; Auto Analysis (COBAS INTEGRA)
- Liver
- ✓ Triglycerides ; Commercial Kit
- ✓ Total cholesterol; Commercial Kit
- ✓ Histology Analysis; Oil Red O staining

^{9:} AIN-76 Vitamin mix; Dyets, Bethlehem, Pennsylvania, USA

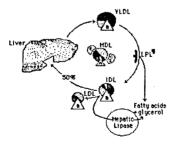
Results

Liver TG and TC

- Values are mean ±S.D.
- Letters with different superscripts in the same raw are significantly different (p<0.05) among the groups by Duncan's multiple range test.

Serum HDL-C, LDL-C, VLDL-C

(mg/dl)


	Wks	Control	Alcohol	SKW3000	SKW1000	SKW330
HDL	0	53.09±3.84	53.09±3.84	53.09±3.84	53.09±3.84	53.09±3.84
Chol	6	76.65±4.98	52.96±13.70 th	57.86±5.424	56.85±14.24**	54.71±4.47
4401	8	59.32±5.32	53.46±15.14	61.05±20.12	61.74±8.58	60.31±8.95
	10	62.26±13.37	60.98±3.55	67.90±18.79	69.09±10.98	72.99±9.93
LDL	0	12.14±3.50	12.14±3.50	12.14±3 <i>5</i> 0	12.14±3.50	12.14±3 <i>5</i> 0
	6	13.28±2.87	30.56±16.50	19.37±7.68	22.04±7.65	20.29±8.74
Chol	8	18.19±13.00	25.41±16.10	14.98±2.13	19.82±11.86	17.00±5.60
	10	13.67±7.80	22.90±11.47	14.10±3.85	16.54±4.28	14.50±6.27
VLDL	0	12.78±0.68	12.78±0.68	12.78±0.68	12.78±0.68	12.78±0.68
	6	9.90±0.28	3.67±0.31	5.85±0.22	4.46±0.27	4.29±0.22
Chol	8	9.20±0.46	4.64±0.34	7.24±0.15	6.63±0.24	6.59±0.34
	10	9.14±0.42	6.56±0.37	8.00±0.34	8.65±0.39	9.02±0.18

AST / ALT

						(unit/ml)
	Wks	Control	Alcohol	SKW3000	SKW1000	SKW330
AST	0	113.53±9.32	113 <i>5</i> 3±9 <i>3</i> 2	113.53±9.32	113.53±9.32	113 <i>5</i> 3±9 <i>3</i> 2
	6	⁴ 11.8±01201	13782±9 <i>5</i> 9*	137.82±9. 5 9*	137.82±9.60°	13782±961*
	8	11375±5 <i>5</i> 9°	14815±4.64°	128D1±8.74h	12492±7.69h	113.44±5.05°
	10	10506±8.30 ^{b4}	11930±5 <i>9</i> 8*	11459±11.66 ^{ab}	98.46±6.59°	93.81±8.69
ALT	0	27.39±4.94	27.39±4.94	27.39±4.94	27.39±4.94	27.39±4.94
	6	32.27±5.19 ^b	65.09±8.55°	65.09±8.55*	65.09±8 <i>55</i> *	65.09±8 <i>55</i> *
	8	26.54±3.81°	45.97±0.28°	32.85±2.18 ^b	30.74±4.48 ^{bq}	27.40±3.22°
	10	35.07±7.84th	41.30±2.854	29.50±5.27b	29.27±7.16b	2631±551b

¹⁾ Values are mean ±S.D.

Hepatic Lipase?

- Hepatic lipase was known to be important in the final steps in the lipolytic conversion of VLDL to LDL by hydrosis of the LDL triglyceride.
- * The triglycerides of the other 50% of the IDL (VLDL remnant) is hydrolyzed by hepatic lipase producing LDL, a lipoprotein that is richer than IDL in cholesterol and its ester.
- Therefore, with hindering hepatic lipase activity, it can be reduced to remodel lipoprotein into LDL

²⁾ Letters with different superscripts in the same raw are significantly different (p < 0.05) among the groups by Duncan's multiple range test.

Hepatic Lipase

(U/L)

Wks	Control	Alcohol	SKW3000	SKW1000	SKW330
D	5137±455	5137±4 <i>5</i> 5	51.37±4.55	5137±455	5137±4 <i>5</i> 5
б	65.00±7.92b	426.10±72.43*	426.10±72.43*	426.10±72.43*	426.10±72.43*
8	51.20±8.91°	363.43 ±123.97°	90.97±13.94°	148.58 ±69.84*	246.95±17.89°
10	55.20±1.41°	254.75±22.27°	48.55±2.14 ^b	5638±690°	117.95±68.14 ^b

¹⁾ Values are mean ±S.D.

HB-SungKangWon

²⁾ Letters with different superscripts in the same raw are significantly different (p<0.05) among the groups by Duncan's multiple range test.

Composition

- ✓ Astragalus membranaceus
- ✓ Salvia miltiorrhiza

SungKangWon

- ✓ Pueraria lobata
- ✓ Morus alba
- ✓ Crataegus pinnatifida
- ✓ Alisma oriental

Add

Morus alba

- ❖ Family; Moraceae
- ❖ Part used; Folium
- ❖ Common name; Sang Ye

Effects of Morus alba

☐ Morus alba showed hepatoprotective effects on tacrine-induced cytotoxicity in human liver-derived Hep G2 cells.

(Oh et al. Planta Med. 2002)

Crataegus pinnatifida

- ❖ Family; Rosaceae
- ❖ Part used; Fructus
- ❖ Common name; Shan Zha

Effects of Crataegus pinnatifida

☐ Crataegus reduced the increase of plasma cholesterol and lipid in rats fed a high fat diet.

(Shanthi et al. Indian J. Biochem. Biophy. 1994)

☐ Pretreatment with Crataegus gave close related protection for isoprenaline – induced damage of liver in rats.

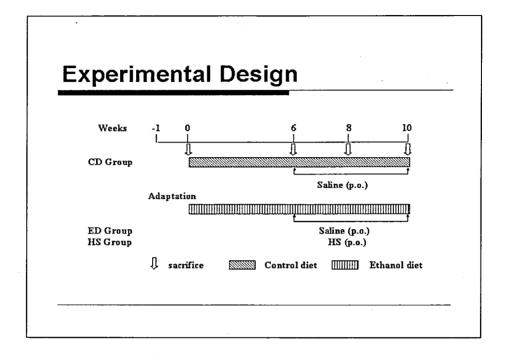
(Ciplea et al. Arzneimittelforschung 1988)

Alisma orientale

- ❖ Family; Alismataceae
- ❖ Part used ; Rhizoma
- ❖ Common name ; Ze Xie

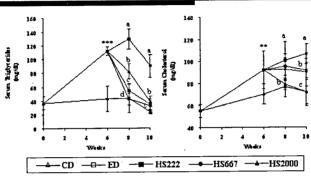
Effects of Alisma orientale

Potential liver-protective activities of the isolated alisol
compounds were evaluated against CCl ₄ -induced liver
damage.

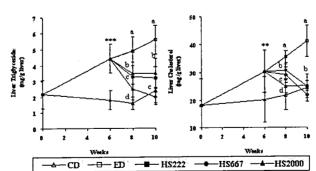

(Chang et al. Kor. J. Pharmacog. 1982)

☐ The serum lipid levels of Alisma groups were significantly lower.

(Lim et al. Korean J. Food Sci. Technol. 2003)


Purpose of Study

To investigate the effect of HB-Sungkangwon
(Astragali membranaceus, Puerariae lobata,
Salviae miltiorrhiza + Morus alba, Crataegus
pinnatifida, Alisma oriental) on fatty liver
induced by alcohol diet


Results		
Nesults		

Serum TG and TC

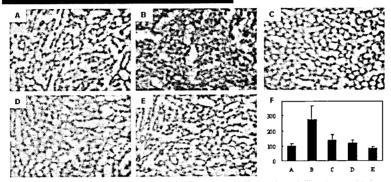
- 1) **: p<0.01, ***: p<0.0001. Significantly different from control group
- Letters with different superscripts in the same raw are significantly different (p < 0.05) among the groups by Duncan's multiple range test.

Liver TG and TC

- 1) **: p<0.01, ***: p<0.0001. Significantly different from control group
- Letters with different superscripts in the same raw are significantly different (p<0.05) among the groups by Duncan's multiple range test.

Serum LDL-C, VLDL-C, HDL-C

		LDLC	VLDL-C	HDL-C
Vice	Group —		mg/dl	
0		16.66 ± 9.58	7.41 ± 1.87	31.20 ± 9.73
	CD	26.46 ± 13.45	8.62 ± 3.67	35.21 ± 6.98
6	ED	41.39 ± 17.36 °	22.33 ± 1.33 ***	28.65 ± 7.68 °
	CD	20.21 ± 9.15 °	8.72 ± 4.21 °	48.36 ± 4.47 •
	ED	49.53 ± 17.02 •	25.90 ± 2.88 *	24.94 ± 7.93 °
8	HS222	45.55 ± 9.66 ·	18.94 ± 1.88 °	38.67 ± 5.65 b
•	HS667	44.78 ± 19.26 ·	8.47 ± 1.71 °	32.94 ± 6.71 °
	HS2000	30.15 ± 4.21 b	16.43 ± 2.23 h	31.70 ± 3.74
	CD	12.02 ± 8.78 4	4.75 ± 0.60 °	55.36 ± 10.48 •
	ED	69.94 ± 11.90 ·	18.05 ± 3.30 °	28.42 ± 6.21 °
10	HS222	39.14 ± 8.47 b	6.95 ± 1.57 h	35.67 ± 3.04 b
	HS667	35.59 ± 8.91 b	6.59 ± 1.93 °	37.71 ± 6.74 °
	HS2000	26.23 ± 9.99 °	7.78 ± 1.54 b	38.27 ± 9.33 b


^{*:} p<0.1, ***: p<0.0001. Significantly different from control group

AST / ALT

		AST	ALT
Wks	Group	Unit	/ml
0		71.79 ± 9.39	32.67 ± 8.52
	CD	89.72 ± 6.17	28.00 ± 6.63
6	ED	133.30 ± 12.78 ***	68.96 ± 9.22 ***
	CD	94.85 ± 8.12 bc	38.45 ± 8.97 °
_	ED	119.52 ± 14.73 ·	62.68 ± 9.48 ·
8	TF222	103.61 ± 6.92 b	59.37 ± 7.07 •
	TF667	99.21 ± 6.41 b	29.84 ± 9.44 °
	TF2980	86.20 ± 9.89 °	33.92 ± 9.26 bc
	CD	96.97 ± 9.97 *	23.50 ± 3.02 °
	ED	105.24 ± 12.86 °	56.74 ± 9.76 ·
10	TF222	88.34 ± 6.72 bc	40.80 ± 9.44
	TF667	40.88 ± 9.44 b	27.73 ± 9.87 °
	TF2000	86.13 ± 9.71 °	36.23 ± 9.92 b

^{*:} p < 0.1, ***: p < 0.0001. Significantly different from control group

Liver Histology

Frozen sections of liver (x40) taken from (A) CD + saline (B) ED + saline (C) ED + HS222 (D) ED + HS667 (E) ED + HS2000 (F) Densitometer analysis – treated rats on 10 weeks. Frozen sections were stained with Oil Red O and counterstained with Mayer's haematoxylin. Lipid droplets were stained red.

What is Found

Sungkangwon

HB-Sungkangwon

TG, Total-C

(in blood and liver)

By hepatic lipase activity

\$\textstyle{\Pi}\$

Effects to remedy on fatty liver induced by alcohol intake