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Abstract - This paper is concerned with attitude estimation using low cost, small-sized accelerometers and
gyroscopes. A two step extended Kalman filter is proposed, which adaptively compensates external acceleration. External
acceleration is the main source of estimation error. In the proposed filter, direction of external acceleration is estimated.
According to the estimated direction, the accelerometer measurement covariance matrix of the two step extended Kalman
filter is adjusted. The proposed algorithm is verified through experiments.
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I.LINTRODUCTION

Attitude estimation is necessary in many different appli-
cations. Probably the most extensively studied area is atti-
tude estimation in inertial navigation systems (INS) [1]. In
INS, attitude is very accurately estimated using expensive
accelerometers and gyroscopes. Accelerometers and gyros-
copes are too expensive and too large for most applications.
However, due to recent electro-mechanical technical advance,
in particular due to micro electro mechanical systems, low
cost, small-sized accelerometers and gyroscopes have been
developed [2]. Basically attitude can be estimated using acc-
ometers only by measuring the gravitational field. However,
due to disturbances (most notably external acceleration),
gyroscopes are also used to reduce effects of disturbances.
Thus the key issue is how to combine accelerometers and
gyroscopes to obtain good attitude estimation. Almost all
papers use the Kalman filter to do this : attitude estimation
for mobile robots [3], for a walking robot [4], and for a
head-tracker [5].

In our paper, we propose the two step extended Kalman
filter, which adaptively compensates external acceleration.
External acceleration, which affects attitude estimation
based on accelerometers, is the major source of attitude
estimation error. Similar approaches, which also adaptively
compensate external acceleration, are used in [5] and [6].
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ILINERTIALSENSORSFORATTITUDEESTIMATION

Attitude in the paper means pitch angle () and roll
angle (¢) of the Euler angles. The heading (yaw angle) is
not considered in the paper. The Euler angles are the
angular rotation between the body axis (z,,¥,,2,) and the
inertial axis (z;,y;.2;): we follow the standard aeronautics
convention in [71.

To estimate attitude, we use 6 measurement variables:

¢ (a,,a,a,) ' accelerometer outputs in the body axis.

* (9,,9,.9,) which measure
angular rates around the body axis.

gyroscope outputs,

Attitude can be estimated using accelerometers only by

measuring the gravitational acceleration. From simple
geometry, we have
9=sin*1(az) and q’>=sin~1(ay/0099) (1)
where all accelerometer outputs are normalized with the
gravitational acceleration constant g. Note that only e, and
a, are needed for attitude estimation. Although @, is not
directly used for attitude estimation, e, plays an important
role in the proposed algorithm. Attitude estimation error in
(1) could be large when there are external acceleration:
accelerometers cannot tell difference between the gravita-
tional acceleration and external acceleration. Attitude can
be estimated by integrating gyroscope outputs. However,
the integration error inevitably accumulates as time goes
by; thus gyroscope-based attitude estimation is reliable

only for the short time.

Iil. STANDARD EXTENDED KALMAN FILTER

In this section, we introduce the standard Kalman filter
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for attitude estimation.
The state z(t) and the measurement z(t) are defined as
follows:
z(t)=1[0 ¢ w, w, w,|’ (2)
t)=la, ¢, 9, 9, 5.
The system equation is given by

z(t) = A(t)z(t) +w(?) (3)
z(t) = f(x () +v(t)

000  cos¢l(t) —sm¢(t) sinf
001sing(t)tand(t) cos¢(t)tand(t) singcosd

A(t) =000 0 0  fla) = w
000 0 0 w,
000 0 0

w,
Process and measurement noise w(t) and v(t) are assumed to
be uncorrelated zero-mean white Gaussian processes satisfying

00000 70000
00000 07,000

Q=[0040 0= E{w(t)w(t)'}, B={0 0730 0|= E{v(t)v(t)’}.
000q0 000730
00004 00007,

Note that there is a singularity in 4 at § =t=/2:tan(+7/2) is
not defined In most attitude estimation problems, this poses
little problem since @ and ¢ are in the range of 16l < 7/2 and
l¢l € /2. Once the system model (3) is chosen, the remaining
thing is to select the covariance matrix @ and R. Since the esti-
mation error depends on how @ and R are selected, it is important
to choose carrect @ and B values. In (3), the first two rows repre-
sent the standard relationship between (8,¢) and (w,,uw,w,).
Since this relationship is exact, the first 2x2 block of @ is a
zero matriX. The last three rows imply that we assume the deri—
vatives of (w,,w,w,) are uncorrelated white noises and its cova-
riances are all ¢,. This assumption is made because of simplicity
although it is possible that the assumption is not true for many
real situations. The covariance value ¢, reflects our knowledge
about (U}I,u}y,ﬁlz). For example, small ¢ value means that we
w,w,) of the object is slowly changing. The
measurement noise covariance R is a diagonal matrix, which
means that all sensors are assumed to be uncorrelated. Usually,
R is chosen from sensor characteristics. In this case, 7, indicates
how good or bad the given sensor is: for example, large 7, value
means that the gyroscope output noise is large. In addition to
indicators of each sensor's accuracy, R plays another important
role when two sensors are fused to estimate the same quantity:
note that attitude can be estimated from either accelerometers or
gyroscopes. The role is to decide amount of each sensor’s contri—
bution to the estimation. Thus the ratio between (r,,r,) and 7,
is a weighting of two sensor’s contribution. This weighting fun-
ction role is autormatically achieved if R is chosen according to
each sensor’s accuracy. Since the measurement output is sampled,
a discretized system of (3) is used Suppose the sampling period
is T An exact discretized system is a highly nonlinear system;
thus to obtain a simplified discretized system, we assume that
A(t) is constant during the sampling period. Then the discretized
system is given by [8]

assume that (w,,

Tpyy =0 tw, )
T, = flz,) +v,
where z, =z(kT) and z, =z(k7),

2, =exp(denn = [l WD)

0 cosg (k) —sing(k7)
WkT) = [ sing(kDtand(kT)  cosp(kTtand (k7))
Process noise covariance matrix @, of the discretized

system is given by
E{wkwk'}
~f exp(A(kT)s) Qexp(A(KTY s)ds
Ta TS WD WETY —qlTZW(kI)

2‘11]1ZWU€7) oI

The measurement noise covariance matrix of the
discretized system is the same as that of (3). The standard
extended Kalman filter for (4) is given as follows [8]:

e Time Update

e Initialization
z, © Initial attitude  z,_,, =&z,
- B set 0 “,1-@1'745 ‘FQ,L
e Measurement update(Joseph form)
K, =P G/ (GG + R
ik =i; +](k(2k—f(i;))
P, =(U-KG)P (- K.G) + KRK, .

cosB(kT) 0 000

af(z) 0 cosg(kTaosf(kT) 000
6= faz =10 0 100| &

T 0 0 010

0 0 001

IV. TWO STEP EXTENDED KALMAN FILTER

The main drawback of the standard extended Kalman filter
is that the estimation error becomes large if the object is ex-
periencing external acceleration. The Kalman filter contains the
model (1), which is not valid when there is external accelera-
tion. This problem cannot be avoided even if very accurate
accelerometers are used. Thus when there is external acceler-
ation, gyroscope outputs should be trusted more and this can
be done by making 7, and r, large. Similar ideas are employed
in [5] [6], though different system models are used. In [5], if
gyroscope outputs are zero and inclinometer outputs are not
changing, then it is assumed that external acceleration does
not exist and accelerometer measurement noise covariance
(corresponding to 7, and 7,) is adjusted to small value. In
[6], the following observation is used to detect existence of
external acceleration.

Observation: A necessary condition for acceleration free
movements is

a§+a§+af=1 6)

The above observation states that if external acceleration
does not exists, then acceleration sensed by 3 axis accele-
rometer should be the gravitational acceleration only. Recall
that the accelerometer outputs are normalized with the gravi-

_42_



tational acceleration so that (6) is satisfied. In [6], if (6) is
not satisfied, only gyroscope outputs are used to estimated
attitude. In our framework, this can be interpreted as select-
ing very large 7, and 7, when (6) is not satisfied. In this
paper, we use the same method to check existence of external
acceleration: it is assumned that there is external acceleration if
flo,ap0,)=ld +a +a’=1>4 N

where § is a scalar parameter depending on accelerometer
measurement noise characteristics. When existence of external
acceleration is detected by (7), we use more sophisticated method

to adjust 7, and r,. The direction of external acceleration is
estimated and according to the direction, r; and r, are adjusted.

To do this, we propose the two step extended Kalman filter:
® Initialization e Time Update

- 1z, : Initial attitude Ty = 8,1,

- F iset0 P =9P9/+Q,
¢ Measurement Update Step 1 : Gyroscope only
Ko =P G (GP G +Ry! @®)
3, = +K, (5, — Giy) |
B, =U-K ,G)P (I-K G)+K RK.

k.g 2

30 0

where G =[04], R,={0r, 0],
007y

2. =

2
Zr1 = [R ]
k2 R
® Accelerometer noise covariance adjustment
- if (7) is satisfied, then
Trk|_ TLe-1 o2 T1,nom
[TZJ-—max(al [T2,k—1]+%(zk'l q’kzk’g), [Tz.nam]) ©
o (lyl<1) and «, are scalar parameters and G,
can be obtained from the following partition of G:
G =[G G
- if (7) is not satisfied, then
[Tl,k:l: a lrx.k—1]+ [Tl.nam}
r?,k r2,k—l r21nom
® Measurement Update Step 2 : Acceleration now
Kk,a :Pk—,g C;,k,(Q,kPchg Q,k’+atkl) 1
T =Th, +K;c,a(zk,1 - Cl,kzkg)
P =U-K,C )P (-K, G ) +K R K
Tk O
where R ;= [ Lk }

0 Top

(10)

In (8), only gyroscope outputs are used to estimate the state.
Note that (8) is nothing but the standard Kalman filter equation
when only gyroscope outputs (2,,) are available. In (9), 7,
and 7,,; are adjusted if there is external acceleration. Note
that z,, is the accelerometer output and C{_kik.g is the esti-
mated accelerometer output using only gyroscope outputs.
The difference between these values should be small when
there is no external acceleration. When there is external acc-
eleration, z,,— C{_k:ik_g is proportional to external acceleration.
Thus the role of (9) is that accelerometer output in the direc-
tion of external acceleration is not trusted. The level of trust is

reflected in r,, and 7,,. Note that in (9) and (10), a low pass
filter is used so that r,, and r,, are not changed abruptly.
Also note that 7, and r,, are always greater than 7.,
and 7y,,, since too small r, and r, values may cause the
Kalman filter divergence problem. In the measurement update
2, acceleration measurements only are used to estimate state.

We note that if the same C, is used and A& is constant
(i.e., the adaptive algorithm is not used), the standard Kalman
filter (5) and the two step Kalman filter (8) and (11) are iden-
tical. In the two step extended Kalman filter, the standard
extended Kalman filter is divided into two step to estimate
and compensate external acceleration.

V. CONCLUSION

In this paper, we have proposed the two step extended
Kalman filter for general purpose attitude estimation. The
main contribution is external acceleration, which is the
main source of estimation error, is estimated and
compensated. To verify the proposed algorithm, the sensor
system consisting of 3 axis accelerometers and 3 axis
intentional

gyroscopes is constructed and tested while

external acceleration is generated.
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