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Abstract—This paper suggests the techniques in determining
the values of the steady-state equivalent circuit parameters of a
three-phase squirrel-cage induction machine using immune
algorithm. The parameter estimation procedure is based on the
steady state phase current versus slip and input power versus
slip characteristics. The proposed estimation algorithm is of a
nonlinear kind based on clonal selection in immune algorithm.
The machine parameters are obtained as the solution of a
minimization of least-squares cost function by immune
algorithm. Simulation shows better results than the
conventional approaches.-

1. Introduction

In an ac induction motor drive, the electrical parameters
are, generally, determined via the classical analysis and
no-load tests. Estimation of the performance behavior of an
induction machine is also done by plotting the steady-state
slip curves. Generally to obtain the parameter, one must use
the equivalent circuit relations and the experimental results
obtained from the above-mentioned classical analysis.
Therefore, the parameter values obtained by direct classical
approaches or experimentation can reveal significant
differences in the entire range of slip varying from 0 to 1. To
describe the performance of the induction machine more
precisely and to reduce the differences between the estimated
and real performances, one must modify the parameters
obtained from the classical analysis. To achieve this purpose
in motor, the use of system identification algorithms based
on the artificial algorithm appears to be a very promising
approach. These algorithms allow one to take into account
the effect of measurement errors, disturbances, and random
signals on the estimated parameters. Since the equations
relating the phase current to the slip and the circuit
parameters involve many variables and are nonlinear,
parameters can have difference values in case of the change
of load.

This fact does not enable one to directly use the many
parameter estimation procedures existing in the literature.

In this paper, obtaining optimal parameters of the
equivalent circuit of a squirrel-cage induction machine is
suggested by immune algorithm. During the execution of the
estimation algorithm, we use the steady-state characteristic
curves of both the input power and the stator current to adjust

the initial parameter vector. The difference between the
proposed immune based optimal parameter and the classical
procedure is compared.
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II. INDUCTION MOTOR MODEL

A squirrel-cage induction machine supplied with a
three-phase symmetrical voltage source can be described
using the equivalent circuit shown in Fig. 1.

In case the stator current the input power, the equations of
and the electromagnetic torque for a squirrel induction motor
can be deduced from the circuit of Fig. 1 and are expressed as
follows:
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In the above equations, R, , R, . and R/, are the stator,

rotor, and iron losses, respectively. Also,
X, X,, and X,, are the stator leakage reactance, rotor

o

leakage reactance, and magnetizing reactance. For
neglecting the iron losses of a double-cage motor, one must
add a second branch in parallel with the magnetizing
reactance.
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HI. OPTIMAL PARAMETER ESTIMATION FOR INDUCTION
MOTOR USING IMMUNE ALGORITHM

A. Motor Parameter for Optimal Parameter Selection

In order to determine model parameters from the slip
curves of the equivalent circuit, reference [1] uses a
nonlinear curve-fitting problem stated as the solution of the
following minimization problem:

. 1%
1;1615111=J(0)=ﬁ§[v, —y(s,-,o)]z (2)

where J(0) is least squares cost function obtained by the

sum of the squares of the differences between the
experimental and calculated slip curves, Q is parameter
space depending on the number of parameters to be
estimated, y; is the experimental data value collected from

machine, y(s;, 0)2 is nonlinear function relating the

measured data, the circuit parameters, and the slip, and 6 is
parameter vector pertaining to Q. Therefore, in case of
double cage, dimension of parameter vector Q is defined as:

9=[Rri’ Rr2’ X Xr2’ Xs’ Rs’ Xm]T- (3)
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The above mentioned specific equation is for depends on
the kind of available experimental data and for obtaining a
parameter vector that minimizes the quadratic performance
index defined by equation (2). In this case, since one must
deal with a nonlinear algorithm to acquire the desired
solution, some numerical problems may arise or a direct
approach would require writing down the normal equations
for solving them. The methods for numerical minimization
of performance index (2) might be modified to update the
estimated parameter vector according to load change.

B. Clonal Selection Algorithm for Optimal Parameter
Selection

In this paper, clonal selection algorithm as depicted in Fig.

2 is introduced. That is, when an antibody on the surface of a
B cell binds an antigen, that B cell becomes stimulated. The
level of stimulation depends not only on how well the B
cell’s antibody matches the antigen, but also how it matches
other B cells in the immune network [3-4]. The stimulation
level of the B cell also depends on its affinity with other B
cells in the immune network. This network is formed by B
cells possessing an affinity to other B cells in the system. If
the stimulation level rises above a given threshold, the B cell
becomes enlarged and if the stimulation level falls below a
given threshold, the B cell die off. The more neighbors a B
cell has an affinity with, the more stimulation it will receive
from the network, and vice versa. Against the antigen, the
level to which a B cell is stimulated relates partly to how well
its antibody binds the antigen. We take into account both the
strength of the match between the antibody and the antigen
and the B cell object’s affinity to the other B cells as well as

its enmity. Therefore, generally the concentration of i-th
antibody, which is denoted by §,, is calculated as follows

[21]:
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In Eq. (3), N is the number of antibodies, and & and g are

positive constants. m i denotes affinities between antibody j

and antibody i (i.e. the degree of interaction), m, represents

affinities between the detected antigens and antibody i,
respectively.

B. Computation Procedure For Optimal Selection

The coding of an antibody in an immune network is very
important because a well designed antibody coding can
increase the efficiency of the controller. As shown in Fig. 3,
there are seven antibodies for parameters,
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function for equation (2). Each parameter is specified in
memory cell of immune network.
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[Step 1] Initialization and recognition of antigen: The
immune system recognizes the invasion of an antigen, which
corresponds to parameter for the optimization problem as
shown in Fig. 3.

[Step 2] Product of antibody from memory cell: The immune
system produces the antibodies that were effective to kill the
antigen in the past. This is implemented by recalling a past
successful solution from memory cell.

[Step 3] Antibody with the best fitness value obtained by
calculation for searching an optimal solution is stored in
memory cell.

[Step 4] Differentiation of lymphocyte: The B-lymphocyte
cell, the antibody that matched the antigen, is dispersed to the

memory cells in order to respond to the next invasion quickly.

That is, select individuals using tournament selection and
apply genetic operators (crossover and mutation) to the
individuals of network.

[Step 5] Stimulation and suppression of antibody: The
expected value 7, of the stimulation of the antibody is given

by
m
3
= @
Oy
where o, is the concentration of the antibodies. The
concentration is calculated by affinity. So, o, is represented
by
sum of antibodies with same affinity as my

Oy S
sumof antibodies

()

Using equation (5), an immune system can control the
concentration and the variety of antibodies in the lymphocyte
population. If antibody obtains a higher affinity against an
antigen, the antibody stimulates. However, an excessive
higher concentration of an antibody is suppressed. Through
this function, an immune system can maintain the diversity
of searching directions and a local minimum.

[Step 6] Calculate fitness value between antibody and
antigen. This procedure can generate a diversity of
antibodies by a genetic reproduction operator such as
mutation or crossover. These genetic operators are expected
to be more efficient than the generation of antibodies. Table
1 shows the results obtained by clonal selection.

[Step 7] If the maximum number of generations of memory

cell is reached, stop and return the fitness of the best’

individual fitness value to network; otherwise, go to step 3.

II1. SIMULATION

The clonal selection algorithm suggested in this paper is
simulated and compared with genetic algorithm, recursive
algorithm cited in reference [1]. In reference [1], Object
function Jy(8) is used but object function J,(8) is

introduced for more optimal parameter selection as follows:
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Fig. 5. Variation of I(s) by Clonal selection and true values.
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Fig. 6. Variation of P(s) by Clonal selection and true values.
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Fig. 7. Variation of P(s) by Clonal selection, GA, recursive, and true values

Fig. 5 represents variation of current curve I(s) by Clonal
selection and true values and Fig. 6 is the curve of power P.
Fig. 7 is variation of P(s) obtained by Clonal selection, GA,
recursive, and true values and Fig. 8 shows variation of P(s)
by Clonal selection (CS-GA), GA, recursive, and true values.
These figures are showing that the suggested algorithm can
be used in parameter estimation.
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Fig. 10. Parameter variation to popsize in objective function J;(6).
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Tabel.1 Initail boundary and ture values.

conference on

gen Ry Rp X X X, R; Xm
Onre | 0.0693 | 0.0132 | 0.00843 | 0.1162 | 0.123 | 0.00778 | 4.3
xlb 0.06 0.01 0.007 0.10 0.10 0.006 4
xub 0.08 0.015 0.01 0.13 0.13 0.008 45

Table.2 parameter

R Rp X X X, R, Xm

Recursive 0.078 ] 0.0129 | 0.0164 | 0.121 0.1167 | 0.0073 429
GA 0.063 | 0.0138 | 0.010 | 0.122 | 0.1260 | 0.0074 4.21
CS-GA 0.0755 | 0.0135 | 0.009 | 0.1168 { 0.1195 } 0.0064 | 4.34
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Table.3 Parameter of each object function

Obj func popsize R Ro X Xn X R, X
60 0.0755 0.0135 0.0089 0.1168 0.1195 0.0064 4.34

J1(6) 100 0.0647 0.0132 0.0081 0.1186 0.1253 0.0078 4.32
150 0.0699 0.0115 0.0074 0.1231 0.1207 0.0066 4.42

60 0.0755 0.0135 0.0091 0.1159 0.1196 0.0068 4.28

J2(6) 100 0.068 0.0149 0.0081 0.1174 0.1242 0.0069 4.47
150 0.0787 0.0136 0.0082 0.1105 0.1188 0.0077 4.30

Tabel.4 Parameter for genetion variation of the each object function

Ob_] func gen Ry Ry, Xn X2 X Rs Xmn

100 0.075594 | 0.013538 | 0.0089178 | 0.11685 | 0.11951 | 0.0064439 | 4.3419
150 0.072702 | 0.01227 | 0.007611 | 0.11916 | 0.1202 | 0.0069193 | 4.1168
200 0.072702 | 0.01227 | 0.00761%1 | 0.11916 | 0.1202 | 0.0069193 | 4.1168
300 0.072702 | 0.01227 | 0.007611 | 0.11916 | 0.1202 | 0.0069193 | 4.1168

J1(6)

100 0.075521 | 0.013558 | 0.0091887 | 0.11596 | 0.11962 | 0.0068187 | 4.2845
150 0.075521 { 0.013558 | 0.0091887 | 0.11596 | 0.11962 | 0.0068187 | 4.2845
J2(9) 200 0.075495 | 0.013516 | 0.0092333 | 0.11596 | 0.11961 | 0.0068168 | 4.4295
300 0.0755 0.01356 | 0.0092373 | 0.11596 | 0.11963 | 0.0068197 | 4.3595
400 0.0755 0.01356 | 0.0092379 | 0.11596 | 0.11963 | 0.0068197 | 4.3604
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