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ABSTRACT

Finite element model updating is an inverse problem to identify and correct uncertain modeling parameters that leads to better
predictions of the dynamic behavior of a target structure. Unlike other inverse problems, the restrictions on selecting parameters are
very high since the updated model should maintains its physical meaning. That is, only the regions with modeling errors should be
parameterized. And the variations of the parameters should be kept small while the updated results give acceptable correlations with
experimental data. To avoid an ill-conditioned numerical problem, the number of parameters should be kept as small as possible.
Thus it is very difficult to select an adequate set of updating parameters which meet all these requirements. In this paper, the
importance of updating parameter selection is illustrated through a case study, and an automated procedure to guide the parameter
selection is suggested based on simple observations. The effectiveness of the suggested procedure is tested with two example

problems, ones is a simulated case study and the other is a real

1. Introduction

The predicted dynamic behavior of a finite
element (FE) model often differs from
experimental results of a target structure.
Thus, an FE model needs to be verified and, if
necessary, updated for further applications. FE
model updating is an
identify and uncertain
parameters that leads to better predictions of
the dynamic behavior of the structure.
Although all real structures have
numbers of degrees of freedom (DOFs) and
modes, the data that can be obtained from
modal tests are quite limited for practical

inverse process to

correct modeling

infinite

reasons. Experimental modal analysis rarely
uses more than a couple of hundred sensors.
Thus, the number of measured DOFs is very
small, and also the available transducers and
- hardware limit the frequency range of
measurements. On the other hand, FE models
finite elements, easily

consist of many
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engineering structure.

extending in many cases to several thousands.
Thus, due to the inherent limitations of
experimental data, the number of parameters
which can be used to modify an FE model far
exceeds that of the measured data of a target
structure. There can be numerous modified or
updated FE models that agree well with the
incomplete test data[l]l. But, if the aim of
model updating is not simply to mimic the
incomplete test results, there must be some
restrictions on the selection of updating
parameters and their allowable changes so that
the updated model physical
foundation.

Updating parameters should be selected with
the aim of correcting modeling errors. So, only
the regions containing modeling errors should
be parameterized and allowed to change in
correction process[2]. And the criteria to be
minimized for model improvement should be
sensitive to chosen parameters. Otherwise,
the updating parameters easily deviate far
from their initial values and lose their physical
meaning[2]. If only the sensitivity is

retains its

concerned, the best way of parameter
selection is to assign an updating parameter to
each of the finite elements having modeling

errors. But, usually an FE model for a real
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structure has modeling errors in so many
finite elements, it is impractical to allocate an
updating parameter for each of the finite
elements, This is because the updated
parameter values of neighboring elements can
be oscillatory, which are physically
meaningless[3]. And, in numerical point of
view, too many updating parameters cause ill—
conditioned problems or trapping in many local
minima[2]. This paper suggests an idea to
select suitable FE model updating parameters
among the many candidates set.

(2)

(b)

Figure 1: Cracked clamped plate: (a)simulated vibration
measurement points: (b)fine FE model (3126 DOFs).

TABLE 2: Comparison of modal properties of
cracked plate and updated FE model

Natural frequency (Hz)
Mode Slmul'ated Updatead Error(%) | MAC
experiment | model
1 3.6011 3.4526 ~4.1231 | 0.9999
2 22.7184 22.0003 | —3.1606 | 0.9694
3 23.7103 23.7655 0.2327 | 0.9694
4 65.0973 62.4133 | —4.1231 | 0.9912
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2.2 Case study

A clamped plate having a crack is provided to
demonstrate the effects of updating parameter
selections on updated results (Figure 1(a)).

Figure 2: Initial FE model (840 DOFs).

¢
PP

Figure 3: Error location of the initial FE model
utilizing force balance method

To simulate experimental data, a fine FE
model with 3126 DOFs, is constructed (Figure
1(b)). It is assumed that out—of—plane (z—
direction) vibrations are measured at 36
points as marked in Figure 1(a). Figure 2
shows an initial FE model with 840 DOFs. Due
to the crack of the test plate, the modal
properties from the initial FE model show
deviations from those of the test model as
summarized in Table 1. Here, the experimental

and analytical modes are paired using the MAC.

The 2" and 3™ mode pairs are poorly
correlated and the initial FE model needs to be
updated for a better correlation. Using an
error location technique(5], the region with
dominant modeling errors are checked as
shown in Figure 3. The plot shows dominant
errors in the initial model around the cracked
area. In this case study, the finite elements
around the dominant error region are grouped
into two as in Figure 4. And it is assumed that
the mass matrix of the initial FE model is
correct and only the stiffness matrix needs

to be updated. Thus, the stiffness correction
matrix is expressed when we setting two

updating parameters Dy, and D, -

2
AK =3 p,K, (0

i=1

where k, is the stiffness matrix of the "

region, and the coefficient p, is the

updating parameter. Among the correlations
shown in Table 1, the natural frequency error
of the 2nd mode pair and the MAC values of
2™ and 3™ mode pairs, which show the most
undesirable
multiobjective function to be minimized:

correlations, are set as the

{Fan’Fs} ={((fn, —f;rz) .ﬂ,)z’l_MAczz!l“mcsa} @)

where MAC, is the MAC value of i” mode

pair, and f and f, are the i" experimental

and analytical natural frequencies respectively.

S s TR D ey O O
2 , ,
|

3

o ! I
’ | o ‘
;j_iL:Lti_iL:ﬂ;i;

Figure 4: Case study — setting two updating
parameters.
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Figure 5: Case study — Pareto front and ideal
point,
(a) (b)

Figure 6: Substructure with modeling errors :
(a) n updating parameter; (b) one updating
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parameters.
To prevent the other values moving to poor
optimization results, they are bounded with
constraints:

5n-rY

£0.0025,i=1,3,4

Xl

MAC,>009,i=14.

The maximum allowable change of the

updating parameters, and , are set as
Py, Py,

0:7. To evaluate the effectiveness of the
selected parameters, the multiobjective
optimization problem defined by Egs. (2) and
(3) is solved wusing a multiobjective
evolutionary algorithm{6]. The resulting
Pareto front is plotted as in Figure 5. It should
be noted that the objective functions, F2 and
F3, seldom vary compared to their initial
values, although F1 changes drastically. The
ideal point of Eq. (2) is calculated as

{F,,F,,F,}={0.0000, 0.3453, 0.5105}  (4)

The ideal point{7] is obtained by minimizing
each of the objective functions in Eq. (2)
individually subject to the constraints (3).
Note that the ideal point corresponds to the
lower bound of the Pareto front, which is not
realizable.

Although the parameters are selected in the
regions of large modeling errors, even the
lower bound of the Pareto front is not
satisfactory. Thus it can be concluded that the
parameter selection is not appropriate. Then,
how can we obtain an appropriate parameter
set? This usually requires a considerable
physical insight into the target structure, and
trial~and—error approaches are commonly
used. But in this work, an idea to get
appropriate parameters will be suggested in
the following section.

3. Updating Parameter Selection

Procedure

3.1 Basic observations
Consider a substructure with n updating

parameters ( , , ..., ) as in Figure 6(a).

Assume that modeling errors are correctly
located and the updating parameters are
associated with them. An objective function or
criterion F which defines a difference between
analytical and experimental results is modified
utilizing the updating parameters. In a linear
approximation, the maximum possible variation
of F is given by

()

where is the maximum allowable change

of the updating parameters. Thus, the absolute

sum of the sensitivities, , represents

the effectiveness of the selected updating

parameters in modifying the objective function
and is defined as total sensitivity.

Figure 7: Schematic of the 1
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The equality in Eq. (7) holds only when the
signs of QE,O_F"“’?_I_’_ are the same. Thus,
Oa, Oa, 0Oa,

it can be said that the two requirements of
updating parameters in section 2.1, number of
parameters and their
competitive. That is, by grouping updating
parameters into larger parameters, the number
of updating parameters can be reduced, but
the total sensitivity decreases in general.

sensitivities, are

From this basic observations, we can
construct a set of updating parameters such
that the objective functions of primary concern
are most sensitive to the selected updating
parameters. The parameter selection
procedure suggested in this study is
accomplished by a sequence of two different
After the 1% phase of
parameter selection procedure, the analyst can
stop the parameter selection procedure if the

selection phases.

resulting number of parameters are acceptable.

Otherwise, he or she can proceeds to the 2™
phase so that the number of parameters can be
further reduced.

3.2 Updating parameter selection

3.2.1 1% PHASE OF PARAMETER SELECTION

Among the of updating
parameters which are dealt with in this study,
if only the sensitivities of updating parameters
are concerned, the best way of selecting
updating parameters is to assign an updating
parameter to each of the finite element with
modeling errors. By grouping the individual
several substructures and
to each

two requirements

elements into
assigning an updating parameter
substructure, the number of parameters can be
reduced at the cost of total sensitivity
decrease. But, examining Eq. (7), the number
of parameters can be lowered without
sacrificing the total sensitivity by merging the
neighboring elements as long as the
sensitivities of the merging elements are the
same. Based on this fact, the 1st phase of
updating parameter selection for multiple
F={Fp,F(1,...,F,} is

objective  functions

stated as :

STEP 1 Assign an updating parameter a to
each finite element with modeling errors and

calculate for  each

parameter,

STEP 2 Merge two neighboring parameters

ai and aj into one parameter  if

where

Note the

sensitivity of the objective functions with
respect to the merged parameter is simply

equal to Repeat this until no

neighboring parameters have the

sensitivity sign.

same

3.2.2 2" PHASE OF PARAMETER SELECTION

As a result of the 1* phase of the parameter
selection procedure, a list of updating
parameters are obtained. Obviously, none of
the neighboring parameters have the same
sign of the sensitivities. When the number of
the resulting parameters are still large and
unacceptable, the ond phase can be processed.
In this case, sacrifice of total sensitivity
should be accepted to some extend.

Consider two neighboring parameters a, and
a;. By merging the two parameters, the total

sensitivity is changed from

(8)
to

(9
where and n is the total
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number of the updating parameters. Thus, the
decrement of the total sensitivity by this
grouping is expressed as
6_F+B_F_0_F+_a£' (10)
Oa,| |0a, |Oa, Oa,
In other words, the required sacrifice for
reducing one parameter is equal to Eq. (10).
Thus, it is quite reasonable to search two
neighboring parameters that minimize Eq. (10)
This
results in one parameter reduction at the
minimal cost. Note that F={Fp,Fq,...,Fr}is a

and merge them as one parameter.

vector quantity. Thus, there can be various
methods to evaluate the vector sacrifice (Eq.
(10)). In this study, a scalar index, assuming

that every objective function is equally
important, is presented as
> AR, (11)

k=p.g....r

where the normalized sacrifice AF, is defined

as the sacrifice of the objective function F,

divided by its total sensitivity at the beginning
of the 2™ phase (or before any decrement).
From these observations, the 2™ phase of the
updating parameter
suggested:

selection procedure is

STEP Find two neighboring substructures
which minimize Eq. (11) and merge them as
one parameter. Repeat this procedure until
some ending criteria, such as the finial number
of parameters, the maximum allowed sacrifice
or both, are met.

3.2.3 PROGRAM IMPLEMENTATION

For simple FE models, the parameter selection
procedure can be performed manually as
illustrated in Figure 7. But for complex
structures, this can be a tedious or difficult
work. For a program implementation, the
computer needs to know whether two finite
elements or substructures are neighboring or
not. As a finite element consists of a group of
nodes, two neighboring elements must share
some nodes. For example, an 1D element must
share one node with the other element if they

are neighboring. For each combination of three
different kinds of elements, the number of
sharing nodes of two neighboring elements is
summarized in Figure 8. Pseudo codes
implementing the parameter selection
procedure as well as the neighborhood test are
provided in [8]
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Figure 8: Number of sharing nodes of two
neighboring elements.
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