A Machine Learning Approach for Automatic Protein Name Extraction from Journal Articles

기계학습 알고리즘에 근거한 단백질 이름의 자동 추출

  • 김정호 (서울시립대학교 기계정보공학과) ;
  • 백은옥 (이화여자대학교 분자생명과학부/약학대) ;
  • 이공주 (이화여자대학교 분자생명과학부/약학대학)
  • Published : 2004.04.01

Abstract

생물학 분야의 문헌으로부터 유전자 및 단백질 이름을 추출하는 기술은 바이오 텍스트 마이닝 분야의 기반 기술로 그 중요성이 점차 증대되고 있다. 이 연구에서는 생물학 분야 문헌의 초록으로부터 하나의 토큰으로 구성된 single gene name은 물론 여러 개의 토큰으로 이루어진 multi gene name까지 유전자나 단백질의 이름을 자동으로 추출하는 시스템 TagGeN(Tagger for Gene Name)을 제안한다. TagGeN은 기존의 태거와 달리, 문자나 숫자 이외의 기호를 포함한 유전자나 단백질 이름의 품사 처리에 있어 개선 방안을 제시하고, 여러 토큰으로 이루어진 이름의 인식에 있어 나란한 두 토큰이 갖는 태그 정보를 이용한 조건부 확률에 근거하여 Markov 모델을 도입한다. 위와 같은 개선방안을 구현한 TagGeN은 성능면에서 기존의 유사시스템에 비해 recall 20.8%, precision 4.7%의 성능향상을 보임으로써 본 연구에서 제안한 방법론의 효과를 입증한다.

Keywords