Xp—tree: Xpath £H0|& A

32tJ|8te

Nguyen Van Trang®, & & 38|, 8 2

-t

2

Cll Al
o

0

ESE TSt M2
g

=

-

[

ol

=

2

E=0% N COIEBOoIA 324
{nvtrang®, jhhwang, khryu}@dblab.chungbuk.ac.kr

Xp-—tree: A new spatial-based indexing method
to accelerate Xpath location steps

Nguyen Van Trango, Jeong Hee Hwang, Keun Ho Ryu
Database laboratory, Chungbuk National University

Abstract

Nowadays, with the rapid emergence of XML as a standard for data exchange over the Internet had led to considerable
interest in the problem of data management requirements such as the need to store and query XML documents in which the
location path languages Xpath is of particular important for XML application since it is a core component of many XML
processing standards such as XSLT or XQuery. This paper gives a brief overview about method and design by applying a new
spatial-based indexing method namely Xp-tree that used for supporting Xpath. Spatial indexing technique has been proved its
capacity on searching in large databases. Based on accelerating a node using planar as combined with the numbering schema,
we devise efficiently derivative algorithms, which are simple, but useful. Besides that, it also allows to trace all its relative
nodes of context node in a manner supporting queries natural to the types especially Xpath queries with predicates.

1 Introduction

Query languages for XML and semistructured data rely on
location paths for selecting nodes in data items. In particular,
XQuery and XSLT are based on Xpath.

To speed up the processing of regular path expression query, it
is important to be able to quickly determine all the relationships
between any pair of nodes in the hierarchy of XML data such as
ancestor-descendant, parent-child, etc...[1][2]. Current index
structures that support an efficient evaluation of such query,
however, there is no method exists today for eliminating
redudant work in the predicate evaluation part of Xpath queries.
Unfortunately, the computation time is dorminated by the latter
when queries have multiple predicates that are typical in XML
data [4]. :

This work is a proposal for a databases index structure, which
is applied index technology in spatial data structures, and has
been specifically designed to support the evaluation of Xpath
queries. By applying the spatial-indexing technology, it is easily
capable to support all Xpath axes (ancestor, following,
preceding-sibling, descendant...) and extended some axes (first-
following sibling, second-following sibling, first-preceding
sibling...). Assume that, readers are familiar with Xpath and
axes.

Our main goal for this method is to optimize search
performance using a spatial search tree, especially for searching
the sibling relations from the given node, which is proven that
concentrate most of data.

2 Background and Previous work

To efficiently address complex queries, it is important to
quickly deternine the structural relationship among any pair of
tree nodes. In this section, we first provide background
information on the importance of numbering schemes in
determining structural relationships, and then discuss previous
works on the concept of regular path expressions

2.1 Overview of Xpath Axes and XML document region

The basic building block of Xpath is the expression, directly
reflects the recursive nature of tree-shaped data. Xpath
expressions operate on tree of element or attribute nodes [5].

<a>
<h>
<>

a <il> < fd><i> € Je>
/ \ /b e

b f <
| N < </g>
c g h <')<></><></>
2
/\ /\ <fhs P !
i i >
a e]

Figure 1: Tree representation of small XML document instance.

In this tree, the inner nodes a, b, ¢, f, g, h represent XML
element nodes, the leaf nodes d, e, g, i and j represent either
element or attribute nodes.

XPath expressions specify a tree traversal via two parameters:
(1) a context node (not necessarily the root) which is the starting
point of the traversal, (2) and a sequence of location steps
syntactically separated by /, evaluated from left to right. Given a
context node, a step's axis establishes a subset of document

10

2004 = ¥4 B3] £ St E =Y Vol. 31, No. 1

nodes (a document region). This set of nodes, provides the
context nodes for the next step, which is evaluated for each node
of the forest in turn. The results are joined together and sorted in
document order.

2.2 XML order encoding method

We are now left with the challenge to find an encoding of the
tree-shaped node hierarchy in an XML document that can be
efficiently supported by existing database technology. Here,
efficiency means that the encoding has to map the input tree-
shape into a domain in which a node's region membership may
be tested by a simple relational query. Here, with the limitation
of paper, we do not concerned about numbering scheme but for
the simplicity we applied the Dietz’s numbering schema to
encode the document. To the best of our knowledge it was an
efficient method and easy to understand [1].

Figure 2(a) illustrates the node distribution of the example
document (shown in Figurel) after its nodes have been mapped
into the pre/post plane and figure 2(b) is an overview of a real
XML document when mapped into plane with Dietz’s numbering
schema.

.

FREN,

st

(®)

Figure 2: (a) Node distribution in the pre/post plane and XML document
regions as seen from context nodes f (b) Example of a pre/post rank
distribution for an XML document instance of 100 nodes.

2.3 Indexing with R-tree

In the concept of accelerating Xpath location steps [5], the
authors proposed a databases index structure that can completely
live inside a relational database system. The proposal index
structure can benefit from advanced index technology R-tree.
The data driven R-tree remains balanced even in the present of
skewed distributions.

post
Axis o Quary witkdon wondowia 13
o oot yor wt ey
<hild Apemletacl | Popeee(ell prel) L falew o
Sescosdonc dpeelocg P opeatingi 0 e o
doscondant-nrmuel! dewwlriol . Mpetied . o e o
pareat Iper(v) parivt | pedier xl . e ol o
L nited Mogmefetl (el x). s feler o
-cerrer -or welt I N
. talleving (ipri a {pmd(w), 2} PR Y
-] precoding AR eivs, . (O pmetin)) puler o
Tellewing-atbling Apewul Xy (pestlur, X7 . parip), foloe . 4
P rcedtng-eibling W greiel, L U peat{xiy . peeivi, felee o
pre axTrbuse gl N R peetlnl] . preli) tmme . 0

Figure 3: R-tree based index structure and Xpath axes c and their
ding query wind (@) (t node v)

But in fact, this method has just focused on processing 4 main
axes: ancestor, descendant, preceeding, following axes (based on
the MBR property) and the remains require further processing.
All axis query windows in the two-dimensional pre/post plane

depend on a range of selection in the pre as well as the post

11

dimension. Thus if the nodes in the window are determined via
two independent range query, large query windows generally
leaded to numerous false hits during scan.

After getting all nodes in the windows query preceeding, it
requires remarkable steps to search the required nodes for sibling
that will waste search space for complex queries (overlapping
problem) and lack the ability for the position-based queries
(location predicate).

3

3.1 Overview

Xp tree structure

When designing an access method, we not only have to be
aware of the nature of the data, but must also know the types of
queries and the method are to be used. Typically the R-tree-based
indexing method has solved most of cases for the simple queries
but a problem not addressed by using that method is the siblings
and the complex queries with predicate especially with location
parameter.

From that observation, we realized that all the data concentrate
on the diameter of the plane but the previous method did not
concerned about that, it just has focused on processing 4 axes
and the remains require further processing. For example, for
query preceding sibling and complex queries such as:
descendant[2]/preceding-sibling[3] [31[4]. It means that, the
required node in the third position of the preceding sibling of the
second descendant of the context node. R-tree-based indexing
takes time or event hardly to solve that kind of query.

3.2 Index structure

Xp-tree is fundamentally different from the previous access
method (R-tree based method). Xp-tree applies a different
insertion/split strategy to achieve the sibling relationships of the
XML data easily, while not compromising the space
discrimination capabilities of the index too much. New method
will be more efficient than previous work because of using
pointers that will reduce the number of windows query for
searching and save time,

With the Xp-tree, we aim for an access method that strictly
preserves sibling trajectory. Hereafter, trajectory means the
sibling nodes are nodes in the same level and have the same
parent. As such the structure of the Xp-tree is actually a set of
leaf nodes, each containing a partial children of one parent,
organized in a tree hierarchy. In other words, siblings of one
parent are distributed over a set of disconnected leaf nodes. As
we shall see later on when discussing about query processing, it
is necessary to be able to retrieve siblings based on their sibling
identifier. We choose a double linked list that connects leaf nodes
through previous sibling and following sibling. Moreover we use
one more pointer to connect from a node to its parent. Therefore
we use 3 pointers in a one node to connect to previous sibling,
next sibling, and its parent. This ensures that from every node we
can trace quicky its relationship.

For example, in the case of Xmark XML Benchmark
document, after numbering (for simplify, in here we only use
preorder value), all the nodes will be represented in the Xp-iree
structure as belows:

20044 = 3= o] B st E =53 Vol. 31, No. 1

i I e
Tegions " T puwple ok “Categnries
11
(A& 314] c3a
14

Thom CaTagories
Tels - e
o peics Avemred tatagury

L))
nx;v prolsle

4 It d.\- descrigmisg
2 <
/f‘ . IDC P & . ,,' \
AN : T
J-znalxnr.,-fn.\s-o Tadme g ,// ?
LI anotatson ay 3
El l T 142y XIHK})\
il dngis vu"nT

TRET onmw

Figure 4: Element hierarchy of Xmark XML Benchmark document instances

CIL 1]
L1l LL 1]

[TLRCT T EEE] (I
S

Figure 5: Xp-tree in tree structure and its data 5 representation on leaf node

3.2.1 Algorithms

The goal is to keep the sibling trajectory of the XML data. The
insertion algorithm is rarely simple. To insert a new entry, we
simply have to find the leaf node that contains its predecessor
(previous sibling) with the same level in the trajectory. We start
by traversing the tree from the root and step into every child
node that overlaps with the MBR of the context node. We choose
the leaf node containing nodes connected to the new entry.

Algorithm Insert{N,E)

1. Invoke FindNode(N,E) to find a leaf node N' containing
the sibling predecessor of the new context node entry E
to be inserted

3 ifnode N is found,

3 if (N' has space) not full then

4. Insert new context node, E into W',

5. else

6. CreateNewl eafNode(E) to create new ieaf node
for new context node, E, insert newly created leaf
node into tree

7 endif

8. else

9. CreateNewl eafNode(E) to create new leaf node

for new context node, E, insert newly created leaf
node into tree
19, endif

Algorithm CreateNewleafNode(E)

Steps up the tree until a non-full parent node, Qs found.
Traverse the nght-most path from this node, Q to reach

the ron-leaf parent node P at the favel 1,

if non-leaf node P is not full the newly created leaf
node created is inserted into node P,

else

Split the non-leaf node P by creating a new non-leaf
node R at level 1 and this new non-leaf node R has the
new leaf node created previously as its first child.

Split of non-leaf nodes may propagate upwards the tree as
the upper non-leaf nodes may become full.

5. endif

W

Figure 6. Insert Algorithms

3.2.2 Query Processing

In this part, we briefly depict some algorithms that are
designed for specific cases: sibling queries. The remains axes
(based on the majors axes of Xpath) are not mentioned in this
paper due to the limitation of paper.

Algorithm SiblingQuery(N, E, RESULT)

1. Invoke Findnode(l, E) to find node N’ which contains entry E

2. ifN is found

3. for each entry E" of N”

4 AddE’ 1o RESULT

5 if Following sibling pointer F is valid,
Invoke FollowingSibling Query(NF, RESULT) where NP
is the childnode of N pointed to by F

6. if preceding sibling pointer P is valid
Invoke PrecedingSiblingQuery(MNP, RESULT), where NP
is the childnode of N pointed to by P.

7. elsa

8. This node does not exist

9. _endif

Figure 7: Algorithm for sibling query

The linked lists of the Xp-tree allow us to retrieve connected
nodes without searching. We have two possibilities: a connected
node can be in the same leaf node or in another node. If it is the
same, finding it is trivial. If it is in another node, we have to
follow the next (previous) pointer to the next (previous) leaf
node. It is similar with the case of finding parent-child
relationship

4 Conclusion

This work has been primarily motivated by the need for an
efficiently Xpath index structure that would be capable to
support the whole family of Xpath in an adequate manner as well
as searching process especially for complex queries that contain
predicate statement. Thus, in this paper, we just only point out
idea, and design a new algorithms for enlarging that specific
target.

Theoretically, the Xpath queries could gain from advanced
query processing techniques like spatial-based indexing method
because of its features. Observation of this kind, together with
the cost estimation procedures could lead to a rather pragmatic
cost model for Xpath queries. It will be interesting to compare
this approach to other models.

References

{1} Quanzhong Li, Bongki Moon. Indexing and Querying XML
Data for Regular Path Expression. In Proceeding of the 27"
VLDRB Conference, Roma, Italy, 2001

[2] Tove Milo, Dan Sucio Index Structure for Path expressions.
In Proc. of the Int’l Conf. on Database Theory, page 277-
295, 1999

[3] Dan Olteanu, Holger Meuss, Tim Furche. Xpath: Looking
forward. In Proceeding of EDBT Workshop on XML Data
Management, 2002

{4] Kumar Gupta, Dan Suciu. Stream Processing of Xpath
Queries with Predicates. In SIGMOD Conference, San
Diego, CA, June 2003

[5] Torsten Grust. Accelerating Xpath Location Steps. In
SIGMON Conference, 2003

12

