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ABSTRACT

Researches on microstructural evolution and characteristics during friction stir welding of

aluminum, magnesium alloys and stainless steels were introduced reviewing recent studies done by the author’s

group at Tohoku University in Japan.

1. Introduction

Friction Stir Welding (FSW) is a new solid-state
welding process which was invented at The Welding
Institute (TWI) in 1991 [1]. The process can achieve
butt-welding utilizing frictional heating and intensive
plastic deformation as schematically shown in Fig. 1.
Many advantages of FSW have been demonstrated on
weldability and mechanical properties especially for
aluminum (Al) alloys as compared to arc welding. The
microstructures of fraction stir (FS) welds have been
also investigated relating to the various properties. This
paper discusses the microstructural characterization of
FS welds for Al, magnesium (Mg) alloys and stainless
steels by reviewing our recent studies [2-20].

Fig. 1 Schematic illustration of FSW process.
2. Microstructural Characteristics

2.1 Microstructure Distribution

A typical cross-sectional view of Al alloy 2014A-T6
is shown in Fig. 2 [21]. The microstructural regions in
the FSW butt joint are generally notated as unaffected
(base) material zone (A), thermally (heat) affected zone

(HAZ) (B), thermo-mechanically affected zone
(TMAZ) (C) and stir zone (SZ) (dynamically
recrystallised zone or weld nugget) (D) as indicated in
Fig. 2(b). The microstructures in SZ and TMAZ are
characterized by recrystallization and recovery,
respectively, as shown in Fig. 3 [7].
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Fig. 2 Microstructural regions in an FS weld [21].
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2.2 Fine-Grained Structure in SZ

FSW produces fine-grained structures in the SZ. The
hardness and strength are affected by the grain size
which can be controlled by the FSW parameters [5-9].
The grain size and hardness of SZ in pure metals and
solid-solution-hardened alloys obeys the Hall-Petch
relationship [7,13,15] as shown in Fig. 4. The
grain-refining by FSW can suppress the softening
during welding of ultra-fine grain strengthened
materials produced by equal-channel angular pressing
(ECAP) [5.9.12,13] and accumulative roll-bonding
(ARB) [16], as shown in Fig. 5. The pore-free,
homogeneous, fine-grained microstructure in SZ can
also improve the post-weld formability [15,18].
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Fig. 4 The relationship between grain size and hardness
in the SZ of FSWed 1050 A1{13].
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Fig. 5 Hardness distributions in ECAPed 1050 Al after
GTAW, LBW and FSW [5].

2.3 Precipitation and Dissolution

Precipitation-hardened Al alloys soften during FSW.
Fig. 6 shows the hardness distribution in FSWed 6063
Al alloy {2]. The hardness distribution can be explained
by dissolution and coarsening of fine precipitates
depending on the local thermal hysteresis, as shown in
Fig. 7. Post-weld aging can re-precipitate fine particles
and recover the hardness well in the weld because of
compositionally homogeneous SZ [3], compared with
fusion welds. But we have to note that too fine grain
structure in SZ increases the volume fraction of

precipitation-free zone along grain boundaries during
past-weld aging and prevents the hardness recovery [8)].
During FSW of 304 austenitic stainless steel, sigma
formation was observed in the SZ as shown in Fig. 8§,
which suggests that the intense deformation accelerates
phase transformation [14,20].
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Fig. 6 Hardness distributions in FSWed 6063 Al [2].
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Fig. 8 Slgma in FSWed 304 stainless steel [14].
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2.4 Microtexture Distribution

Orientation imaging microscopy (OIM) studies of FS
welds has suggested that shear texture components were
induced by the shear plastic flow along the rotating tool
pin surface during FSW [4]. The microtextures are
characterized as slip planes rotating around the tool pin,
especially the microtexture of basal slip planes
distributes ellipsoidally in the SZ of FSWed Mg alloy,
corresponding to ‘“onion ring” as schematically
illustrated in Fig. 9 [10]. The microtexture can
affect mechanical properties of FS welds [11].
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Fig. 9 Ellipsoidal distribution of basal planes in FSWed
AZ61 Mg alloy [10].
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