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ABSTRACT : The problem for parameters estimation of the received signals impinging on array sensors has long been of great research
interest in a great variety of applications, such as radar, sonar, and land mobile communications systems. Conventional subspace-bused
algorithms, such as MUSIC and ESPRIT, require an extensive computation of inverse matrix and eigen-decomposition. In this paper. we
propose a new parameters estimation algorithm via nonlinear minimization, which is simplified computationally and estimates signal

parameters simultaneously.
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. Introduction eigenstructure of the sample covariance matrix observed from
array outputs (Ralph O. Schmidt, 1986), (R.Roy and T.Kai ath,
1989). With the estimated AOAs, MUSIC and ESPRIT
estimate signal powers and noise power by using a lirear

The extraction of signal parameters such as the number of
the signals, AOA(Angle of Arrival)s, power levels of the

signals impinging on array sensors is of interest in radar,
abgebraical method including inverse matrix computation. The

disadvantage of MUSIC and ESPRIT is that they need an

sonar, and mobile communication systems. The problem of
estimating AOA has been applied to a variety of research

fields (Lal. C. Godara, 1997), (Titus K.Y. et al, 1994), In ©€Xtensive computation of inverse matrix and eig2n-

mobile communication systems, the AQOA estimates in decomposition.  In  particular, they are computatior ally

downlink have been used to estimate an uplink channel ineffective for large-sized array antenna systems.

response (Lal. C. Godara, 1997). It is well known that

MUltiple Slgnal Classification algorithm (MUSIC) and ~ LhiS Daper represents a new algorithm to simultaneo.sly

Estimation  Signal Invariance Translation (ESPRrT)  estimate the parameters of signals impinging on aTay

algorithms  estimate the AOAs by exploiting a specific ~ SEnsors via nonlinear minimization (Y. Bard, 1974). The

el A A proposed algorithm formulates an quadratic function from an
%4890, jsicong@mmuackr, 061)240-7238 array signal model and minimize the function by using

*F 213] 91, {shpark,cskimu,ysahn@ mmu.ac.kr}, 061)240-7127, 7307. 7065 complementary  pivoting algonthm (COttle’ RW  and
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GB.Dantzig, 1968). Our
eigen-decomposition and seeks a feasible solution within a

approach does not require
few number of iterations in calculation. Computer simulations
are made to estimate signal parameters, such as AOA, signal
power, and noise power. It follows that the AOA estimation
ability of the proposed algorithm is compatible to MUSIC.
Moreover, our approach provides the estimates of signal
power and noise power.

In Section 2, we will briefly mention a basic data model in
array sensors. In Section 3, a quadratic function from the
data model
parameters estimation is presented. The results of computer

is reformulated and the new algorithm for

simulations followed by conclusions are given in Sections 4
and 5, respectively. Throughout the paper, the following
notation will be used.

Glossary of Notation

For an arbitrary matrix F, G,
C™ ™ 1 the space of m X n complex-valued matrices
R™*" : the space of m X n real-valued matrices
GP=(G'G) 'G" : the pseudo inverse of G when G is
a column full rank.
G' : the complex conjugate transpose of G
G* : the complex conjugate of G
G” : the transpose of G
F® G : the Hadamard product of F and G, which is
defined by [F® G ;= F;Gy
Tr{G] : the trace of matrix G,
I : an identity matrix
Diag[G}] : a column vector composed of diagonal elements
of the matrix G
E[ -] : the expected value for a random variable.

Op( - ) : operation counts in computation.

2. Array Data Model

Consider an array composed of m sensors with arbitrary
locations and arbitrary directional characteristics. Assume
that ¢ narrowband signals impinge on the array from
0,,6,,---0,. The
z(t) € C™ ' at time, t=1,2, -+, K, is modeled by Eq.
.

unknown  angles, array  output,

z(t) = As(t)+ n(t) (1

where the unknown matrix A € C™ ¢ is given by Eq.(2).
A= [a(gl)’a(ez)i"' a(gq)]v (2)

where a(f,) € C"*' denotes the ith array mode vector

for the AOA 6,. The s(t) € C**! is the received signals
given by Eq. (3).

s(t) =[s,(t), 5,(t), - s5,(¢)]". 3)

The signal waveformms are stationary Gaussian random
process with zero mean and uncorrelated. The additive noise
vector, n(t) is also a complex, stationary, and Gaussian
random process with zero mean. The noises are independent
of the received signals, and their covariance matrix is given
by vI where ¥ denotes the variance as an unknown scalar.
Based on the above assumptions, the true covariance matrix
of the observation vector Z(t) is expressed by Eq. (4).

R=E[z(t)z' (t)] = AR A" +vI &

where R,
R,= E{s(t)s' (t)]. Taking K snapshots by observation,

the sample covariance matrix is given by Eq. (5).

denotes signal covaniance matrix given by

K

1
R==Nz(t)L (¢ (5).
KH()() )

Given R, the problem of estimating AOAs is to search the
combination of 2¢+1
{017 02. 0:]7 V, 01,09, ***

function defined by Eq. (6).

unknown  parameters  set,
0,}, which minimizes the cost

J=| AR A +vI-R|% 6)

where O denotes the power of the #th signal. The Eq. (6)
is a criterion that searches a good approximation to the true
covariance matrix, Eq. (4). The minimization of J causes a
complex nonlinear optimization problem. Since all but R in
Eq. (5) are unknown parameters, this problem is not
tractable. We herein introduce a new approach for finding a
set of unknown parameters.

3. Signal Parameters Estimation

We consider p dimensional azimuth space as a collection of



AOAs  with equi-spaced discrete  angles,
--¢,]. For this case, a array mode matrix,

possible
{(‘517 ¢27 *
A€ C" " can be obtained by Eq. (7).

A=a(¢,), a(¢), - a(¢,)] M

where a(¢,) € C™*} denotes the ith assigned array mode
vector for equi-spaced discrete angle, ¢i. Here, it should be
noted that A is known. With the matrix ;1, the expected
covariance matrix can be given as mg;lt e gmrt

where R, € C"*" denotes the signal covariance matrix to
be estimated, and it is the diagonal matrix which has p
diagonal elements, i.e., 51, &2, c;,,. Considering the
additive noise in array sensors, one possible criterion is to
minimize Frobenius distance between R in Eqg. (B) and the

matrix (AR, A"+ vI) in the sense of least-square fit. It

follows that the problem for parameters estimation can be
solved by minimizing the cost function Eq. ().

Y(o,v)= | ARA'+vI-R|%, 8

subj. to &LgO,i: 1,2, - p, v = 0.

The minimization of ¥ is a nonlinear optimization problem.
One way to solve this problem is to use steep descent
algorithm as shown in (H. A. D’assumpcao, 1980), However,
the function ¥ has many lJocal minima that prevent
convergence to a global minima. It also consumes much
time to converge a minimal point. As a result, it is
necessary to select an initial set of parameters sufficiently
near a global minimum in order to apply the steep descent
algorithm to Eq. (8). This becomes a serious obstracle in
minizing . To solve this problem, we introduce a new
approach, which is known as  complementary pivoting
method (Cottle, RW and G.B.Dantzig, 1968). Firstly, the Eq.
(3) can be reformulated as the quadratic function of Eg. (9)

~ 7 1 . F . . .
for s€ R”*V”"! since R,, is a diagonal matrix.

V(s) = s Hs— 2d's+c, subj. to 5= 0, (9)
G h

Rt om?

Ge R, G,= | a'(¢,)a(¢;) | *fori,j=1,2,-- p,

he R, h=a'(¢,)a(s,) fori=1,2,-- p,

se RUFDNL

where He R+lix<r+l)

:9: [o’:b (;27 ot GA,U ;’]ty

de R(l)+l)><1,' dl:: af((bz)m(d):) for 2:1727 D.
d=(d), dy,- d,, e]', e= Tr[R], c= Tr[R'R].

The problem of finding the feasible solution of Eq. (9)
subject to constraints may be solved by a quad-atic
programming. The number of unknown parameters tc be
minimized, p+1 > m is very large. In general, it is not
effective to find an unique minimal solution by applyirg a
steep descent technique to Eq. (9), as mentioned above.
Here, notice that H is a semidefinite positive matrix with
rank m+1. For this case, the complementary piveting
method, can be applied to Eq. (9). When Kuhn-Tucker
condition for optimality of the equation is satisfied (Y. liard,
1974), Eq. (9) can be reformulated as Eq. (10).
w=Mz+q subj. tow=0, z= 0, w'z=0 (0
where M e RU*D 70D 4 2 R?*! and M= 2H,
q=2d. Observing Eq. (10), we know that the nonlinear
quadratic programming given by Eq. (9) can be simplified
to an linear programming. Thus, this linear programuning
seeks a pair of @ and 2 as a feasible solution by app ying
linear complementary pivoting method to Eq. (10). Whiie
seeking a feasible solution, a pair of w and 2 should always
satisfy the constraints added to Eq. (10). It is known that
this method is a fast algorithm which seeks fezsibie
solutions with a few number of iterations in calculatior As

the result, a minimal solution, $ are obtained. From 8, we

and the

find the estimated signal powers, o, 0y, --- o,

estimated noise power, ;. The estimated AOAs car be

directly calculated from s, since the index 4 of c,

i=1,2, --- p, correspond to the discretized angles.
4. Computer Simulations

Numerical results were demonstrated to evaluate the
performance of the new algorithm. The AOA estimatcs of
the proposed method were compared with ones by MUSIC.
The proposed minimization method provides not only the
AQA estimates but also the estimates of signal powers and
noise power. This is to show a robustness of the proposed
algorithm. In all simulations, we considered an unform
linear array(ULA)
wavelength, A/2. Two uncorrelated BPSK signals iminge

with equi-spaced sensors of half a

on array sensors. Assumed that E[|s ()] ]=1. 't is
assumed that at each sensor the additive white noise is
present and is uncorrelated from sensor to sensor.

alternatively. Firstly, the total number of elements in array
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is m=38, SNR(Signal-to-Noise Ratio) is 10 dB, and 100
snapshots are taken. The discretized angles are assigned at
intervals of 0.25 for the

antenna broadside. The angular separation of the two
signals is one beamwidth. Fig. 1 and Fig. 2 show the AOA
estimates of MUSIC and the proposed method, respectively.
The abscissa represents an angular separation in a standard
beamwidth between two received signals, ie, AOA in the
beamwidth. The standard beamwidth is defined by 27/m in
radian for the ULA. It shows that both MUSIC and the
proposed method resolve the two signal accurately. Note
that the ordinate in Fig. 1 represents the spectrum of the
cost function in MUSIC, while the ordinate in Fig. 2
corresponds to the received signal power. The true signal
powers and noise power is El]s(f)]]=1,
E[ls:(t)|]=1, E[|n(t)] ] =0.1. For this case, the

estimated signal powers were found to be 0.9419 and 0.9558
and the estimated noise power was 0.0901. These results
are very close to true values. Next, several simulation
parameters are changed, while the other simulation
conditions is the same as in Fig. 1 Fig, 2. The total number
of antenna elements to be m= 6. Two signals with SNR
3 dB are received Note that FE[|s (¢)]]=1,
E[ls(t)l ]=1, E[In(t)] ]=0.5012. The
separation is assumed to be 0.2 beamwidth. Fig. 3 and Fig.
4 show AQOA estimates of MUSIC and the proposed method,
respectively. The propose method provides accurate AOAs
estimates, while MUSIC fails to resolve the two signals.
The two estimated signal powers were found to be 0.6736
and 07912, and the estimated noise power was 0.4359.
Comparing with the results in Fig. 1 and Fig. 2, the
estimation performance is degraded due to low SNR and a
small number of antenna elements.
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Fig. 1 AOA estimates of MUSIC at SNR 10dB.
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Fig. 2 AOA estimates of the proposed method at SNR 10dB.

85

. T v
sok
ssf
g o ]
X
T
g 4} -
&
o dof E
(]
2
= g5t 1
3oF . ]
25} -
2 A A . . . A :
2 s ) 05 0 05 1 15 2
AQOA in a beamwidth
Fig. 3 AOA estimates of MUSIC at SNR 3dB.
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Fig. 4 AOA estimates of the proposed method at SNR 3dB.

5. Conculations

In this paper, the problem of estimating simultaneously

signal parameters via nonlinear minimization was discussed.
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The new algorithm which does not need eigen-
decomposition and inverse matrix computation was proposed.
Through computer simulations, the performance evaluation
of the new algorithm was made by comparing with the
results of MUSIC. It is found that the estimation
performance of the proposed method is better than that of
MUSIC. The other advantage of our approach is to provide
the simultanecus estimates of signal parameters, i.e., signal
powers and noise power. Finally, we shall stress that our
approach can be effectively used to enhance the performance
of wireless communication systems and radar systems. In
the future, the evaluation of beamforming performance will
be one of useful topics.
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