조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출

Detection and Disgnosis of induction motor using Conditional FCM and Radial Basis Function Network

  • 김승석 (충북대학교 전기전자컴퓨터공학부) ;
  • 김형배 (충북대학교 전기전자컴퓨터공학부) ;
  • 유정웅 (충북대학교 전기전자컴퓨터공학부) ;
  • 전명근 (충북대학교 전기전자컴퓨터공학부)
  • 발행 : 2004.04.01

초록

본 논문에서는 유도전동기 고장진단을 위하여 계층적인 하이브리드 뉴럴네트웍을 제안하였다. 시스템의 입출력 데이터에 근거하여 패턴을 분류하고자 할 때 직접적인 분류가 어렵거나 성능이 좋지 않을 경우 적절한 방법을 통하여 변환을 하거나 또는 패턴 분류기의 특성에 맞도록 변환하여 패턴 분류 성능을 향상하는 등 단계별 변환 및 분류 기법을 이용하였다. 제안된 방법에서는 실험에 의해 측정된 전류값을 주기별로 주성분분석(PCA) 기법을 이용하여 입력차원을 축소한 후 이를 조건부 FCM으로 방사기저함수의 초기치를 최적화하여 학습을 하였다. 이는 주성분분석이 가지는 특성을 이용하여 데이터의 특징을 나누었으며 이를 뉴럴네트웍의 학습 기능을 이용하여 모델의 최종 성능을 개선하는 것이다. 각각의 알고리즘이 가지는 특징을 활용하면서도 단점을 계층적으로 보안하여 유도 전동기 고장 진단 성능을 개선하였다. 이를 실제 계측된 유도전동기 데이터를 이용하여 제안된 방법의 유용성을 보이고자 한다.

키워드