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INTRODUCTION AND BACKGROUND

In conventional frame analysis, connections between beams and columns are ordinarily treated as
either perfectly rigid or pinned. Perfectly rigid connections (moment connections) allow full
transfer of moment from beam to column. Pinned connections are commonly referred to as shear
connections which act as hinges and allow full transfer of shear and axial forces between beam
and column, but they do not allow transfer of moment. In reality, beam-to-column connections
are neither fully rigid nor perfectly flexible and are known as semi-rigid connections. The
behavior of semi-rigid connections is quantified by their moment-rotation relationship the shape
and degree of nonlinearity of which depend on connection’s geometric and material variables.
This nonlinearity is attributed to number of factors such as material discontinuity of the
connection assemblage, local yielding of connection components, stress concentration at bolt

holes and fasteners, geometric changes under applied loads, and local plate buckling (Chen et al.
1996).

The moment rotation behavior (M-0) of steel connections is commonly obtained by
experimental testing. Several researchers have reported static M-8 test data of connections
among these studies Chen et al. (1996) and Chen and Lui (1991) are known for their
comprehensive M-6 data base. Also, several cyclic M-8 connection behavior known as hysteresis
behavior are reported in literature among which Popov and Bertero (1973), Tsai et al. (1995),

Astaneh et al. (1989), Kukreti and Abolmaali (1999), and Abolmaali et al. (2003) are referenced
in this paper.

The realization of the effect of semi-rigid joints on overall frame behavior can be traced back to
1930s. Baker (1931) and Rathbun (1936) first applied conventional slope deflection and moment
distribution to semi-rigid frame analysis, respectively. Monforton and Wu (1963) were first to
incorporate the effect of flexible joints into matrix stiffness method. This was done by modifying
beam-column element stiffness matrix to incorporate the effect of semi-rigidity. Similar
algorithms were also introduced by Livesley (1964) and Gere and Weaver (1965). In these
algorithms a linear moment-rotation connection curve and a factor were used to modify the beam-
column element stiffness matrix. The dynamic behavior of frames with flexible joints was studied
by Lionberger and Gere (1969) and Suko and Adams (1971) in which semi-rigid connections
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were modeled by elasto-plastic rotational springs. Lightfoot and LeMessurier (1974) conducted
investigations on semi-rigid frame analysis considering axial and shear deformations. From 1974
to 1991 more than twenty matrix stiffness method-based semi-rigid frame analysis techniques are
reported among which Nethercot (1986); Goto and Chen (1987); Lui and Chen (1987); Poggi
(1988); and Goto et al (1991) are mentioned here. Li et al (1995) presented a connection element
method, which allows for joint flexibility associated with all the required degrees-of-freedom for
beam column element, including coupling between deformations. King and Chen (1993)
proposed a practical LRFD-based analysis method for analysis of frames with semi-rigid
connections in which a simplified three-parameter model describing the tangential rotational
stiffness of the semi-rigid connections was presented. Bhatti and Hingtegen (1995) examined the
effect of certain parameters on serviceability limit-state of unbraced frames. Rodrigues et al
(1998) introduced a fictitious connection element with finite and infinite stiffness for its rotational
and translational degrees of freedom, respectively. During the same time Christopher and
Bjorhovde (1998) investigated semi-rigid frame stability by using an effective beam stiffness that
is modified for moment-rotation behavior of the connection to determine unbraced column length
factor. Finally, Kukreti and Abolmaali (2000) presented a nonlinear finite element algorithm for
analysis of semi-rigid frames subjected to earthquake ground acceleration.

Most of the aforementioned studies and those not referenced in this paper do not specifically
address the effect of connection unloading on frame stability due to connection moment
redistribution at different incremental load levels. In semi-rigid frames subjected to distributed
loads, connections’ stiffness decays with increasing moment. At bifurcation, some connections
unload as the result of buckling due to rotation reversal Chen et al (1996). During unloading, the
stiffness of each unloaded connection increases and equals to the initial stiffness, which
consequently increases the frame stiffness and enables it to withstand additional load beyond
bifurcation. On the other hand, if column of a frame is subjected to concentrated load in absence
of the member loads, none of the connections will unload until bifurcation. Upon bifurcation the
connection’s stiffness decreases and no unloading will take place, and frame becomes unstable.
Also, frames made of different types of connections with different moment-rotation
characteristics, could undergo unloading in certain connections depending on beam and column’s
flexural rigidities.

The aforementioned discussion shows the complex and unknown behavior of semi-rigid
frames, which necessitates a detailed analysis technique that considers connection unloading.
Indeed, during unloading some connection may undergo reverse loading the effect of which needs
to be incorporated in the analysis.

ANALYSIS ALGORITHM WITH CONNECTION UNLOADING

This paper presents a plasticity-based solution method that iterates to find the simultaneous
incremental member and geometric stiffness of the structure subjected to loading of its members,
and loading, unloading, and reverse loading of its connections. Based on finite element
procedures, a steel frame with flexible joints can be considered as an assembly of beam-column
elements and dimensionless rotational spring elements. Linear displacement based finite element,
yields to the solution of linear equations:




[efio}= {7} M)

Where {F} is the force vector containing all loads applied to the degrees of freedom of the
structure, /K/ is the global stiffness matrix, and {} is the global displacement matrix. The
stiffness of a beam-column element (including P-§ effect) in global coordinate is:

[£]= [kea]+ [keb]+ [kg] @

where [k.,] is the element axial stiffness matrix, [k.;] is the element bending stiffness matrix, and
[k,] is the geometric stiffness matrix. The matrices of Equgtion 2 is defined in most matrix
structural analysis text books such as Gere and Weaver (1965).

The connections were modeled as dimensionless spring elements with the same translational but
different rotational degrees of freedom (DOF) to model the relative rotation of the beam and

column end rotations as shown in Figure 1. The relative rotation of the spring element is
calculated as follows:

6=46 -6 3)

where & and 6, are the beam-end and column-end rotations, respectively. Rotational degrees of
freedom between beam and column are governed by the spring stiffness. The behavior of the
spring is quantified only by the relationship between applied moment and relative rotation. The
spring tangent stiffness matrix is formulated to be compatible with the classical beam-column

element by making it a matrix of 6x6 in size, and its non-zero elements are: kj;=ke=k and
k36:k63:—k.
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Figure 1 Connection Element

The spring stiffness, K (Equation 6), is defined as the derivative of the kinematic hardening
equation (Equation 4), with respect to relative rotation 8.
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where; Ry; is the initial connection stiffness, R, = slope of the asymptotic line, » is a shape
parameter, and 6, = reference plastic rotation given by:

g, = ~u 5)

where M, is the ultimate connection moment. The tangent stiffness of the connection for any

value of rotation is given by:

- % = AD+ ABE"" - ABC"g"E"-¥ ©)
where
A=R, )
B =1-R/Ry
®
C=B/b
®
D = Ry/Ry
(10)
E=1+Cg" 1n

NONLINEAR SOLUTION METHOD

This study employs direct iteration method to solve the nonlinear system equation. The direct
iteration method was used as an alternative to the classical Newton-Raphson method. In this
method, the first load increment is solved using the initial stiffness, and in the subsequent load
steps the stiffness of the connection is updated as follows:

ki+1 =‘fki +(1-4) ki, (12)
where

ki+1 = stiffness for the next load increment

& = descent parameter

k; = stiffness from the previous load increment

kis= secant stiffness from the previous load increment

The secant stiffness is calculated by finding the actual moment for the calculated rotation from
the previous iteration solution. The descent parameter can be any number between 0 and 1,
which if taken as 0 implies that next iteration stiffness yields to secant stiffness. In certain




instances using a higher descent parameter can result in a more stable solution path. In direct
iteration method, instead of applying an unbalanced load to the structure to achieve convergence,
a weighted effective stiffness i1s sought to satisfy the nonlinear system equation. For the first
iteration in a given load increment, the tangent stiffness is used. Thus, using the linear
approximation of the first iteration, member displacements and forces are calculated and used to
provide a better approximation of the effective stiffness across the incremental load step. For the
connection element, the updated connection stiffness is found by calculating current iteration
cycle secant modulus and obtaining a weighted average between it and the tangent modulus of
previous iteration. The actual connection moment for a given relative rotation is obtained by

using Equation 4 and dividing it by the relative rotation to find the secant stiffness in each
iteration cycle.

For the beam-column, the stiffness for the next iteration cycle is obtained by substituting the
geometric stiffness matrix from the elastic stiffness matrix using the axial force found for each
member in the current iteration cycle. This is relatively simple for the first increment of load. For
subsequent load steps, however, incremental stiffness is not as simple to calculate. Figure 2
represents the conceptual solution path for a single beam-column element, which is split up into
two load increments. The first incremental solution is shown between the origin and point 4. For
the first load increment, a load of {f;} is applied to the element and the element undergoes a
displacement {d;}. The equation to be solved in the first load increment is:

()= ([e]- [k a) (13)

where {f;}4.; is the member force matrix for the first load increment, [k./4s is the sum of the axial
and bending element stiffness matrices, [k;;/ss is the geometric stiffness matrix for the first load
increment (a function of axial force), and {d;}s.; is the displacement matrix for the element for the
first increment of load. Similarly, for the second incremental set of member forces {f}, the
equation that applies to the situation is
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Figure 2 Conceptual Representation of Incremental Solution




Where {f3}4; is the incremental member force matrix for the second increment of load, [kz2/4xs is
the geometric stiffness matrix for the total load after the second increment (a function of total
axial load), and {d,}s is the incremental displacement matrix for the second load increment. The
previous equation reveals the problem of trying to apply the geometric stiffness matrix to an
incremental solution method. It applies only to the total solution and not to the second increment
of force alone. In order to apply an incremental solution, an equation of the following form is
needed in order to apply the direct iteration method in terms of the second second set of
incremental member forces:

{12} = [ Jio} (1s)

To begin the process of putting together an equation of the form of Equation 13, Equations 10 and
11 can be rearranged as follows:

AR A AR [kgl]{dl} - [kgz]{dx} - [ng]{dz} (16)

The problem that becomes evident in Equation 14 is that there is no apparent way to isolate the
right side of the equation in terms of the second incremental displacement {d,}. However,
Equation 16 can be further manipulated as follows:

(= ([l |- [t - [ an)

where {a} can be defined as a 1x6 matrix subject to two conditons:

{a}{d,} = [1] (a 1x1 matrix) (18)
([kgl] - [kg2 ]) {dl }{a} = a square 6x6 symmetric matrix (19)

The constraint in Equation (18) is insufficient alone to solve for {&} because there are infinite
number of solutions to that equation. The symmetric constraint of Equation 19 brings the number
of solutions for {a} to exactly one. The reason that the symmetric constraint is valid is because
the member stiffness matrix must be symmetric or else the beam-column elements will not obey
equilibrium. Subject to the given constraints, the {} matrix is calculated as follows:

4
a, =
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and {d;.;} . is the total displacement vector at the end of the previous load increment ({d;} ('in the
given example with two load increments), and {d}}s,; is the member displacement matrix for the

current load increment. With known {a}, the effective stiffness for a given increment of load to
be used in the direct iteration formulation is as follows:

[ = (] ([ ] [ k2 ) th - [k, @7

VERIFICATION

It was only possible to verify the aforementioned algorithm with those in literature without
considering connection unloading. Thus, an example problem (as shown in Figure 3) was chosen
from King and Chen (1993) and Bhatti and Hingtgen (1995) in which only the connection loading
were considered in their semi-rigid frame analysis.

3.66 m
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H=445kN
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For the aforementioned examples no moment reversal was possible prior to column buckling due
to the absence of loads on the beam. Using Ry, = 88,892 KN-m/rad (786732 k-in/rad), Ry, = 0, 6,
= 0.00252818 rad, and n = 100. Tables 1 and 2 present the comparison of the results of

developed algorithm with those of aforementioned study reported in literature.

Table 1. Absolute maxumum bending moments KN-m (k-in)

Rigid Connections Rigid Connections Flexible Connections
Element No P-Deita with P-Delta with P-Delta
No. Present Study Present Study Bhatti & Hingtgen Present Study Bhatti & Hingtgen
1 163 (1443) 189 (1677) 189 (1677) 196 (1739) 196 (1739)
3 80 (711) 90 (794) 90 (794) 102 (901) 102 (902)
5 80 (711) 90 (795) 90 (795) 102 (902) 102 (902)
6 163 (1450) 187 (1656) 187 (1654) 185 (1636) 185 (1634)
8 80 (711) 90 (795) 90 (795) 102 (902) 102 (902)
10 162 (1437) 189 (1669) 189 (1669) 196 (1732) 196 (1731)
Table 2. Lateral displacements m (in.)
Rigid Connections Rigid Connections Flexible Connections
Node No P-Delta with P-Delta with P-Delta
No. Present Study Present Study Bhatti & Hingtgen Present Study Bhatti & Hingtgen
2 0.02567 (1.011) 0.02966 (1.168) 0.02966 (1.168) 0.03752 (1.477) 0.03752 (1.477)
4 0.03883 (1.509) 0.04397 (1.731) 0.04397 1.731) 0.0582 (2.292) 0.0582 (2.292)

EFFECTS OF CONNECTION UNLOADING

A parametric-type study was conducted on a simple one story-one bay frame with two
connections, as shown in Figure 4, to identify the unloading behavior of one of the connection by
varying the value of stiffness of the other connection. The connection on the left side and the one
on the right side of the frame are designated as Connection 1 and Connection 2, respectively. The
moment-rotation characteristics of each spring are assumed to be linear and elastic. To investigate
the behavior of the frame, the stiffness of Connection 1 was held constant at the value of 11,299
kN-m/rad (100,000 kip-in/rad), and the stiffness of Connection 2 was varied between 0 and
22,599 kN-m/rad (200,000 kip-in/rad). Figure 5 shows the results of this analysis. As the
stiffness of Connection 2 increases beyond 2,768 kN-m/rad (24,500 kip-in/rad), the sign of the
moment across Connection 1 reverses. Thus, moment reversal in Connection 1 occurs as the
value of Connection 2 stiffness drops below 2,768kN-m/rad (24,500 kip-in/rad). This observation
indicates that unloading can occur when a high degree of nonlinearity exists in the connections
such that for a certain combinations of gravity and wind loads (or anti-symmetric loading) the
stiffness of one connection would degrade more rapidly than stiffness of the other connection,
and consequently causes unloading in the connection in which the degradation rate is slower.
Moreover, if two different kinds of connections with different stiffness degradation rates
(different M-8 curves) are used in the aforementioned frame, then, one of the connections will
unload for the same applied moment.

_10_
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Figure 5 Effect of Connection 2 Stiffness on Connection 1 Moment

To further investigate the effect of stiffness of the Connection 2 on the sign of moment taken by
Connection 1, the connections in frame of Figure 5 was modeled to represent a nonlinear M-
6 behavior of a semi-rigid connection including kinematic hardening effects. The following

values were used for the parameters of the kinematic hardening model of Equation 4 for
connections of the frame in Figure 3:

Connection 1: Ry; = 11,299 kN-m/rad (100,000 k-in/rad), R, = 2,260 kN-m/rad (20,000 k-in/rad),
6, = 0.00005 rad, and n = 50.

Connection 2: Ry = 11,299 kN-m/rad (100,000 k-in/rad), R, varied between 2,260 kN-m/rad
(20,000 kip-in/rad) and 3,390 kN-m/rad (30,000 k-in/rad, 8, = 0.0002 rad, and n = 50.

_11 -



Figure 6 shows the moment rotation models used for Connections 1 and 2 of the frame of Figure
5.

M M
R,;=11,299 kN-m/rad } Rui=11,299 kN-m/rad
R;,=2,260 kN-m/rad Ry=Varied .-
© .
R
- 0 = g
(a) Connection 1 (b) Connection 2

Figure 6 Moment Rotation Models

Figure 7(a) through 7(e) shows the history of variation of the moment in Connection 1 by varying
the asymptotic stiffness, Ry, in Connection 2 for the same applied load. Figure 7 (a) indicates that
for Ry, = 3,390 kN-m/rad (30,000 k-in/rad) in Connection 2, Connection 1 behaves mostly linear.
As asymptotic stiffness in Connection 2 is reduced to R, = 2,825 kN-m/rad (25,000 kip-in/rad),
Figure 7 (b) shows that Connection 1 continues to load in the same direction, but yields beyond
its idealized elastic region. At R, = 2,768 kN-m/rad (24,500 k-in/rad) for Connection 2,
Connection 1 starts to unload as shown in Figure 7(c). Upon further reducing the values of
asymptotic stiffness of Connection 2 to 2,757 kN-m/ rad (24,400 kip-in/rad) and 2,260 kN-m/rad
(20,000 kip-in/rad) as shown in Figures 7(d) and 7(e), respectively, Connection 1 continues to
unload and yield in the unloading direction (Figure 7(e)). Thus, stiffness degradation of
Connection 2 has caused Connection 1 to go through a complete unloading and reverse loading.
This would cause redistribution of member forces, which is normally not taken into account in
design procedures without considering joint unloading. Finally, Figure 7 (¢) shows that moment
rotation behavior of Connection 1 is of kinematic hardening types, which is the type implemented
in the analysis algorithm.

CONCLUSIONS

The effects of connection moment reversal (connection unloading) are commonly ignored in
semi-rigid frame analysis, and increasing applied member load and/or joint moment is considered
to degrade connection’s stiffness. However, for connections connecting members with distributed
loads or frames with different types of connections, unloading and reverse loading of connections
are possible which causes connection stiffness to increase. This could result in redistribution of
member forces, or in some cases, member bifurcation. Thus, a semi-rigid frame analysis
algorithm is presented to investigate the unloading characteristics of semi-rigid connections under
static proportional loading. A kinematic hardening equation to model the pseudo-cyclic behavior
of semi-rigid connections is used. A unique and fast solution technique that simultaneously
iterates to find the incremental connection element and member geometric stiffness of the
structure is introduced to solve the nonlinear system equations. The proposed algorithm is used
to investigate the effects of stiffness degradation of one semi-rigid connection on the moment
reversal of the other connection in a simple frame.

._12_
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