oldt
4
ot
e

Bulk Updating Moving Points for the TPR-tree
Hoang Do Thanh Tung, Eung-Jae Lee, Yang-Koo Lee, Keun-Ho Ryu

Database Laboratory, Chungbuk National University, Korea

Abstract

Assisted by high technologies of information and communication in storing and collecting moving
object information, many applications have been developing technical methods to exploit databases of
moving objects effectively and variously. Among them, today, Current and Anticipated Future Position
Indexing methods manage current positions of moving objects in order to anticipate future positions of
them or more complex future queries. They, however, strongly demand update performance as fast
enough to guarantee certainty of queries as possible. In this paper, we propose a new indexing method
derived from the TPR-tree that should has update performance considerably improved, we named it
BUR-tree. In our method, index structure can be inserted, deleted, and updated with a number (or bulk)
of objects simultaneously rather than one object at a time as in conventional methods. This method is
intended to be applied to a traffic network in which vast number of objects, such as cars, pedestrians,

moves continuously.

1. Introduction

Current technology allows systems to collect information
of objects moving in traffic networks instantaneously and
retain it in databases including object’s positions and
velocities, called moving object databases. As a result, there
have been many algorithms or methods proposed and
deployed, such as modeling, indexing, querying, etc, to meet
the requirements for exploiting the vast data in moving object
databases. One of the most concerned methods is an indexing
method to organize data in order to speed up database access
and facilitate query process. So far, indexing methods can be
classified into two areas of research, the first area focuses on
indexing methods managing past information of objects, the
second focuses on indexing methods managing current and
future information of objects. Our paper concentrates on
dealing with the update problem of an indexing method for
current and future information, the TPR-tree method [1].

The TPR-tree is an R*-tree {2] based indexing method. It
uses current positions and velocities of moving objects as
functions of time to build up its index structures. This method
allows users to collect anticipated future queries about
objects in space such as a traffic network. Therefore, speed of
current-information updating performance is dispensable to
ascertain queries reasonably and certainly because vast
number of objects generates updates in a definite current-time
period. In fact, while most methods update one object at a

time into their structure, a real network system can be
invoked for updates by a number of objects at a time unit. For
example, in a big city like Seoul or others, the number of
running cars at a time can reach at least 1 million, if we
assume each car must generate an update during average
every 10 minutes, the number of updates are possibly at least
1666.6 at any second. In case each car generates an update
during average 1 hour (this appears impossible), the number
of update are possibly at least about 300 at any second. On
the other hand, if each car generates an update in every
shorter time, the number of updates will be much greater at
any second. Intuitively, if a method can update a bulk (a
number) of updates into its structure once at a time, it must
speed up update performance significantly whereby queries
become more reasonably and more confidently. From this
idea, we now propose a method based on TPR-tree that
manages to not only update a bulk of objects into its structure
but also optimize the index structure -supporting query
performance; we named it BUR-tree. This method exploit a
compact, easy-to-maintain main memory internal node table
that help clustering input data into suitable packets (bulk),
and that help inserting the packets, including a number of
objects, directly into leaf nodes simultaneously.

The remainder of the paper is organized as follows.
Section 2 briefly describes some methods proposed to
improve update performance for moving object indexing

113

methods, mostly for the TPR-tree. Section 3 presents the
BUR-tree technique, discussing its structure, algorithms.
Finally section 4 concludes the paper with our summary and
future work.

2. Related Works

In this session, we discuss some improvement of TPR-tree

based methods, some of which improved update performance.

And we also discuss a recent update technique for R-tree
based indexing methods, a bottom-up update approach.

In 2000, Saltenis et al. {1} proposed the TPR-tree, which
adapts the R*-tree construction algorithms to moving objects.
The main idea is to make the bounding rectangles as
functions of time by current information of objects, namely
positions and velocities so that the enclosed moving objects
will always be kept in their rectangles over time. However,
the author has not given any solution to update current
information of objects in time except using bulk loading
algorithm that is only appropriate to tree-building process.

In 2003, Yufei Tao [3] proposed TPR*-tree, which
integrates novel insertion/deletion algorithms to enhance
performance of the TPR-tree. TPR*-tree uses swept regions,
formula (1)

Cost(q) = Z Ag (0'597) @

every node o

for insertion/deletion algorithm in place of the integral
metric, formula (2)

now+H (2)
[a@yar,

now

(A is the area of a MBR). The update performance in his
experiment outperformed that of the TPR-tree. The
improvement for update performance is thanks to using
Choosepath algorithm to find the best insertion path in
insertion algorithm. Although Choosepath algorithm deducts
a cost of some extra node accesses, it leads to a better tree
structure so that delete algorithm can be better to find the
node to delete, Consequently, total update performance seems
better. Intuitively, this idea appears not reasonable.

In 2004, Bin Lin and Jianwen Su [4] proposed a new Bulk
loading algorithm for TPR-tree in dealing with non-uniform
datasets. Their paper presented a histogram-based bottom up
algorithm (HBU) using histogram to refine tree structures for
different distributions. Empirical studies showed that HBU
outperforms the bulk loading algorithm of the TPR-tree for
all kind of non-uniform datasets. Despite that, bulk loading

algorithm is still only appropriate to the tree-building process.

Besides ideas improving the TPR-tree, in 2003 Mong Li
Lee [5] proposed a Bottom update approach for R-tree [6]
based indexing methods for moving objects. The strategy of
this approach is that by using a hashing table storing object
IDs and their page addresses; it gives direct accesses to leaf
nodes instead of starting point at the root for updates.
Moreover, to adjust a tree from bottom up to the root, it uses
a compact main memory summary structure storing all
internal nodes in order to find parent nodes. Although its

experiments shows that the update performance is much
better than that of R-tree, this approach only considers
changes of object’s positions instead of their velocities. This
method assumed that position distance between two adjacent
updates is not too far. This seems not suitable to methods like
the TPR-tree, because the TPR-tree considers change of
velocities so that object’s positions between two updates can
be in long distance.

Inspired from the update problem for moving object
methods and the interesting idea of the bottom update
approach, we had our proposal, BUR-tree.

3. BUR-tree

In our method, we are supported that the number of
objects generating update at a time t is greater than one and
this number are much less than total number of objects in a
tree. Moreover, the tree structure must be built up by a bulk
loading algorithm at once, so this structure is first considered
nearly optimal.

To facilitate bulk insertion, the index structure platform for
our method as following
e The index structure is kept intact the same as that of the

TPR-tree.

e An internal node table, seeing Figure [1], in main
memory is used for storing all internal nodes of the tree.
Different from the summary structure table of bottom up
update approach [5], with our table, we can travel from
root down to any internal node without a disk access.

o A hashing table, seeing Figure [1], is to store all object
IDs and their page addresses. Practically, the hashing
table storing antecedents of objects is dispensable to any
index structure to locate object in a structure for deletion
process. However, instead of storing object’s MBR as to
spatial methods, we store page addresses of objects.

As seeing the internal node table in Figure {1}, besides
level, MBR of each internal node, and Nprr which is a pointer
to the physical node, we use childpos pointers, memory
addresses for a node’s childs , and par pointers, memory
addresses for a node’s parent, in order to easily trace Childs
and a Parent of a node in table and yet we use num to
remember the number of child pointers of a node and help
utilizing deleted entry space (we do not discuss this
parameter in this paper). In fact, the size of each entry in the
table is a small fraction of the size of the corresponding TPR-
tree node. This savings is achieved because the individual
MBRSs of the child nodes in the TPR-tree are excluded in the
table as discussion in [5].

The maintenance cost for the main memory internal node
table is not relatively inexpensive. The reasons are that first
we avoid leaving a node to underflow by forcing deletion
operations to run afier insertion operations (discussed in the
below paragraph), and secondly if an internal node is split, a
new entry will simply be added into the end of the internal
node table. Furthermore, in our insertion algorithm, we
always try to avoid enlarging the directory bounding
rectangle of a node except MBRs of its Childs, so cost of
propagating tree adjustment is minimized.

Normally, update process is separated into two periods, the
first period executing operations to delete antecedents of

114

inserted objects, and the second executing operations to insert
new objects. This process usually requires a cost of adjusting
tree because some node can underflow or overflow,
especially when a large number of objects need to be updated
at a time. Therefore, to keep tree structure as optimized as it
first built up, we expect to avoid influencing on this structure
as much as possible. Our strategy is that to update the number
of objects once at a time and reduce adjustment cost, we
cluster updated (inserted) data into bulks of data, each of
which will be inserted directly into leaf nodes. After that, we
either delete antecedents of objects while inserting objects
into leaf nodes or do not delete until after insertion process
finishes. In short, insertion algorithm is the main plank of our
improvement.

Hashing table

] 0 | Leviur

{nternal- node Table

Lo | 300 | asges | gar | Spe | sow
ERE A §

stk
rt

EREN s

b om il et

R

e

PR N I A T P R P Y A P B T e
TPRree

Figure 1.Summary Structure for BUR-tree

3.1 I nsertion Algorithm

In this session, we describe steps of the bulk insertion
algorithm. We assume a number of objects need to be
updated and they are interspersed over space. Steps of the
insertion algorithm as following

Step 1: Clustering inserted data is by using internal node
table. We travel the tree in top-down manner from the root
node in main memory by using the internal node table as
seeing the Figure 2, there are 5 black pointers interspersed in
the space. At each node, we count on clustering rules to
cluster data into finer clusters (in fact, they are MBRs of
tree’s nodes) and decide which node’s child is following.
Moreover, we use a queue to store objects lying outside
cluster areas as unclustered data. As seeing Figure 2, two
points belong to the cluster R1, only one belongs to the
cluster R2, and the other black points will be kept in the
queue. This step will stop at node’s level adjacently above
leaf node’s level. At the end of step 1, if a node at this level
contains some inserted objects, it will be a final cluster. In
short, all total inserted objects are separated into two kinds of
data, clustered data and unclustered data.

Step 2: Before clustered data continue to be inserted into
the leaf nodes that are now Childs of node clusters, we look
for the antecedents of the inserted objects in any those leaf
nodes by using the hashing table for direct access to leaf
nodes. If a leaf node contains any antecedents, we delete
them and adjust their MBR. Finally, we continue to insert
each clustered data (a bulk) into leaf nodes under guidance of
clustering rules, seeing Figure 2, three points found the
suitable leaf node to insert.

Step 3: We propagate adjustment from bottom of the tree.

Step 4: We delete all antecedents of objects of unclustered
data (queue) from the tree. Finally, we insert all objects of
unclustered data into the tree by original insertion algorithm
of the TPR ftree.

Using this insertion algorithm, we expect that update
performance is much improved and the structure after
updated will be in a few overlaps.

Figure 2. Inserting 5 black points into the tree by clustering input
data into bulks (fine clusters)

3.2 Clu stering rules

Clustering rules supports three possibilities to cluster data
when input data (or a raw cluster) reaches a node in the tree.
As seeing the Figure 3, A, B, and C are MBRs of child’s
nodes on a current node. Our work here is to check any node
clipping input data (clipping means ability to enclose some
objects of a MBR), and cluster input data into finer clusters.

* In case of (a) fully clipping, if MBRs of A and B is
clipping input data fully, we can immediately gain two
new clusters (left and right) in A and B, after that we
simply continue to check A’s Childs with the left cluster
as a new input data. Similarly so do we for B’s Childs.

e In case of (b) partially clipping, A and B are only
clipping the input data partially. Visually, however, we
can enlarge B to fully clip the input data such that the
expanded area will not overlap any other MBRs.
Therefore, we will enlarge B and gain two new clusters.
After that we continue to check A and B’s Childs.
Remember that B has new logical size regardiess of its
Childs.

¢ Finally, in case of (c) dead lock, A and B are clipping
the input data only partially, furthermore none of them
can be enlarged to fully clip the input data. Hence we
temporally ignore two remaining objects and input them
into unclustered data (the queue). Then we continue to
check A and B’s Childs with the two new clusters.

115

{a) Fully clipping

(b) partially clipping

(b) Dead lock

Figure 3.Clustering rules for clustering data: clipping input data
fully (a), clipping partially (b), dead lock (c)

3.3 Delet ion Algorithm

Although we hope to delete almost all antecedents of the
inserted objects during insertion process, we describe a
deletion algorithm to delete objects remaining in unclustered
data. A simple algorithm is that using hash table is to obtain
leaf node’s addresses of all unclustered objects. We collect
objects of the same node, delete them together, and adjust
their MBR. After that, we repeat this process with parent
nodes in bottom up manner. In short, this algorithm operates
recursively until reaching root node. In this algorithm, instead
of using a Findparent algorithm, we simply use pointers par
of the table to node’s parents in internal node table.

4. Conclusion

Motivated by traffic networks, which has large volume of
updates from moving cars, and urgent matters of speeding up
update performance for current and future position indexing
methods like the TPR-tree, this paper proposed the method
BUR-tree giving bulk update strategy for the TPR-tree.
Nevertheless, this update strategy can easily be applied to the
members of the family of TPR-tree (or R-tree) based
indexing methods. Our strategy hopefully improves not only
much update performance but also the index structure. In the
future, we are going to accomplish our implementation of our
method and complement it.

Acknowledgment

This work was supported by MOST and KOSEF RRC
(ICRC of Cheongju University) in Korea.

Reference

[1] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez,
“Indexing the Positions of Continuously Moving Objects,” In
Proc. of the 2000 ACM SIGMOD Int’l Conf. on Management of
Data, Dallas, Texas, USA, May 2000.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Se
eger, “The R*-tree: An Efficient and Robust Access
Method For Points and Rectangles,” In Proc. of the
1990 ACM SIGMOD Int’l Conf. on Management of
Data, Atlantic City, New Jersey, USA, May 1990.

[3] Y. Tao, D. Papadias, and J. Sun, “The TPR*-Tree: An
Optimized Spatio-Temporal Access Method for Predictive

Queries,” In Proc. of the 29% Int’l Conf. on VLDB, Berlin,
Germany, September 2003. :

[4] Bin Lin, and Jianwen Su, “On Bulk Loading TPR-tree,”
In Proc. of the 2004 IEEE Intl Conf. on Mobile Data
Management (MDM'04), Berkeley, California, January
2004.

[5] Lee, M. L., W. Hsu, C. S. Jensen, B. Cui, "Supporting
Frequent Updates in R-Trees: A Bottom-Up Approac",
DB Technical Report TR-6, April 2004.

[6] Guttman. “R-Trees: A Dynamic Index Structure For Sp
atial Searching”. In Proc. ACMSIGMOD International
Conference on Management of Data, pages 47-57, Bos
ton, June 1984.

116

