CFD Application in Polymer Processing

Jinbok Yoo Tech. Sup. Team/ CFD Sol. Div.

1

What is CFD?: Computational Fluid Dynamics

Nonlinear Partial Differantial Eqns

$$\frac{\partial}{\partial t} \int_{V} \rho \phi dV + \oint_{A} \rho \phi \vec{V} \cdot \hat{n} dA = \oint_{A} \Gamma \nabla \phi \cdot \hat{n} dA + \int_{V} S_{\phi} dV$$

격자 & 이산화

Algebraic Eqns

연립방정식 계산

Simulations of the flow heat transfer, chemical reaction, etc.

Advantages of CFD

Low Cost

Speed

Simulate Real / Ideal Conditions

Comprehensive Information

Limitations of CFD

- · Physical Models
 - Real world > Physical Model
- Numerical Errors
 - Round-off Error
 - Truncated Error
- · Boundary conditions

POLYFLOW expertise areas

- · Complex rheology and viscoelasticity
 - Generalized Newtonian models
 - Models with yield stress
 - Viscoelastic models (with extensional behaviors)
- · Deforming meshes
 - swelling, contraction, blowing, extension, compression
- · Contact algorithm
 - Detection of the transient non isothermal contact between moving boundary and solid wall
- Mesh superposition technique
 - Moving rigid body in a confine domain (TSE, batch mixing, etc.)

Numerical Technique

- · Finite Element Technique
- We solve the 3-D equations of
 - Conservation of the mass
 - Conservation of the momentum
 - Conservation of energy
 - Constitutive equation
 - A Generalized Newtonian law modeling the shear rate dependence of the viscosity (Bird-Carreau, Cross, power law)
 - · Possibly Viscoselastic differential models (PTT, GL)
 - · An Arrhenius law modeling the temperature dependence of the viscosity
- In order to calculate the following variables:
 - velocity, temperature, pressure, position, residence time

11

Complex rheology Widest range of fluid models

Newtonian fluid

Constant shear viscosity, no memory effects.

Generalized Newtonian possibly with yield stress

Shear rate dependent viscosity, no memory effects. *Type*: Bird-Carreau, Cross, Bingham,

Hershel-Bulkley, power-law.

Viscoelastic fluid

Memory effects, normal stress differences, elongational effects

differential type

Maxwell, Oldroyd-B, Giesekus-Leonov, White-Metzner, Phan-Thien-Tanner, FENE-P, Pom-Pom

integral type

Lodge, Doi-Edwards, KBKZ, ...

Coextrusion of a viscoelastic polymer in a square channel

analysis of secondary flow

low density polyethylene one fluid, but two pigmentations

2D 1/2 channel flow simulation

viscoelastic model : Giesekus, 5 relaxation times

EVSS numerical technique

Q2/Q1 = 4

13

Coextrusion of a viscoelastic polymer in a square channel

Slicing at various Z-sections:

experimental

Kenics mixer

• The flow domain:

- · Two coloured fluids (clay) injected at the entry
- · Evolution of the concentration field from entry to exit
- · Excellent agreement with experimental results

thermoforming of an car in door panel The result shows the good agreement between experimental data and numerical results Pre blowing stage Moving mold

Conclusions

- POLYFLOW has proven many times its ability to simulate complex industrial problems.
- Many companies worldwide are already taking advantage of the actual benefit brought by POLYFLOW.
- The goal of the CFD is to be as close as possible to the process and NOT educating people to complex numerical analysis technique
- COST ARE CUT and QUALITY IS IMPROVED!
 Thank you for your attention.