KSTP Forging Symp. 2004.06.18, Busan

Implication of Dynamic Materials and Softening Models to the Hot Forging Analysis of SDSS

W. Bang, J.Y. Jung*, C.S. Lee and Y.W. Chang

Pohang University of Science and Technology
*Research Institute of Industrial Science and Technology

Department of Materials Science and Engineering Materials and Processes Research Center

Plastic Forming of SAF 2507

- High deformation resistance and springback
 - strictly limited cold forming
- Degradation by precipitation
 - Cr₂N, σ : lower impact strength and toughness
 - hot working above 1000 °C recommended

Research Scopes & Objectives

- Mechanical test ^①
 - to enhance the design of compression test
- Flow curve analysis ^②
 - formulation of softening kinetics
 - criteria of dynamic softening behaviors
- **FEM simulation** ^③
 - application of improved material database (MDB)
 - implication of dynamic softening effect
- Solution qualification ^④
 - forming load estimation
 - microstructure profile

Department of Materials Science and Engineering
Materials and Processes Research Center

Dynamic Softening during Hot Forging

- Thermal softening (pseudo-softening)
 - deformation heating
 - localized adiabatic heating
- Structrural softening
 - dynamic recrystallization (DRX)
 - dynamic recovery (DRV)

High Temp. Compression Results

- Weak or no work hardening
- Work softening
- Stress oscillation

Department of Materials Science and Engineering Materials and Processes Research Center

OM of Deformed Structure

- Shear band formation
- Subgrain formation in δ
- Serration of phase boundary

(c) 1250°C, 1.0/s

Dynamic Materials Model

- Power dissipation efficiency
 - Prasad et al. (1984)
 - amount of energy contributed to structural relaxation

$$\eta = \frac{J}{J_{\text{max}}} = \frac{2m}{m+1}$$

- Stability parameter
 - Ziegler (1963), Kumar (1987)
 - reg'd condition of stable deformation

$$\varsigma = \frac{\partial \ln \left(m/m + 1 \right)}{\partial \ln \dot{\varepsilon}} + m > 0$$

Department of Materials Science and Engineering
Materials and Processes Research Center

Construction of Deformation Maps

- **■** Dynamic materials model
 - stability criterion
 - power dissip. efficiency

OSTECH / PISE

Flow Behavior vs. Microstructure

■ ASB: instability / SG: DRV / GBSR: DRX

		900°C	1000°C	1050°C	1100°C	1150°C	1200°C	1250°C
	0.01	SG	GBSR	GBSR	GBSR	GBSR	GBSR	GBSR
	0.05	SG	SG	SG	GBSR	GBSR	GBSR	GBSR
	0.1	SG	SG	SG	GBSR	GBSR	GBSR	GBSR
έ	0.5	SG	SG	SG	SG	GBSR	GBSR	GBSR
(s ⁻¹)	1.0	ASB	SG	SG	SG	SG	3G	GBSR
	5.0	ASB	SG	ASB	SG	SG	ASB	SG
	10	ASB	ASB	ASB	ASB	ASB	ASB	ASB
	50	ASB	ASB	ASB	ASB	ASB	ASB	ASB

Department of Materials Science and Engineering Materials and Processes Research Center

Seibel Type Compression Test

- Self-compensation of friction
 - Yoshijawa et al. (1994)
 - cup & cone design

tan θ < u

 $\tan \theta = \mu$

 $\tan \theta > \mu$

OSTECH PLAN

Load Relaxation w/DRX

- Gradual transition to steady state
 - structural relaxation by DRX
 - Jonas (1988), Karjalainen (1995), Mateo (2001)

$$\sigma = (1 - X)\sigma_1 + X\sigma_3$$

= $(1 - X)(\sigma_{o1} - \alpha_1 \log t) + X(\sigma_{o3} - \alpha_3 \log t)$

Department of Materials Science and Engineering
Materials and Processes Research Center

Study of DRX based on SRX Kinetics - I

- Unified approach of recrystallization
 - DRX = SRX fast enough to be observed in the time scale of deformation (Hodgson et al.)

invalid for extended recovery processes (ex. cDRX)

Study of DRX based on SRX Kinetics - II

- **SRX Kinetics**
 - additivity rule for on-set time of straining

$$X = 1 - \exp \left[-\ln 2 \left(\frac{\int_{0}^{t} dt}{t_{50}} \right)^{n} \right]$$

- empirical formula

$$t_{50} = A\varepsilon^a$$

- Formulation of DRX
 - Avrami's relation

$$X = 1 - \exp\left[-\ln 2\left(\frac{\varepsilon^{1-a}}{A(1-a)\dot{\varepsilon}}\right)^{a}\right]$$

- "arbitrary" initiation of DRX (1%)

$$\varepsilon_c = \left[A(1-a)\dot{\varepsilon}(0.0145)^{1/n} \right]^{1/-a}$$

Department of Materials Science and Engineering Materials and Processes Research Center

Compensation of Dynamic Softening

■ Dynamic recovery

$$\sigma = \sigma_{DRV} = \sigma_0 + B[1 - \exp(-C\varepsilon)]^m$$

■ Dynamic recrystallization

■ Localized adiabatic thermal softening

$$\sigma = \sigma_{DRV} \cdot \mathcal{Z}_{LSB} = \left\{ \sigma_0 + B \left[1 - \exp \left(- C \varepsilon \right) \right]^m \right\} \left[1 - \left(\frac{T - T_0}{T_m - T_0} \right)^p \right]$$

Summary & Conclusions

- **■** Formulation of gDRX kinetics
 - framework of SRX kinetics determined by load relaxation
- Prediction of softening behavior
 - criteria based on dynamic materials model
- FEM with softening compensation
 - improve in forming load prediction & microstructure

