Y13

Synthesis and Characterization of Bi-substituted YIG

Young-Min Kang, and Sang-Im Yoo

School of Materials Science and Engineering, Seoul National University, Seoul 151-744

Korea

Bi-substituted yttrium iron garnet phases having the compositions of $Y_{3-x}Bi_xFe_5O_{12}$ were synthesized by the solid state reaction using precursor powder of Y_2O_3 , Fe_2O_3 , and Bi_2O_3 (all 99.9% purity) in the temperature range of $850\sim1200^{\circ}C$. While a normal synthesis temperature is $1200^{\circ}C$ in air for the $Y_3Fe_5O_3$ (x=0), it should be lowered with increasing the amount of Bi-substitution x. The solubility limits at $950^{\circ}C$ were x=1.2 and 1.3 in air and pure Ar atmospheres, respectively. Over the Bi solubility limit, nongarnet phases of $BiFeO_3$ and $Bi_2Fe_4O_9$ were formed. The effect of Bi-substitution for the Y site on their magnetic properties and microstructures will be presented for a discussion.

This work was supported in part by the Korean Science and Engineering Foundation through the Research Center for Advanced Magnetic Materials at Chung-Nam National University.