HIGH FREQUENCY CHARACTERISTICS AND MAGNETIC PROPERTIES OF CoFeAIO/NATIVE OXIDE MULTILAYER FILMS

N. D. Ha¹, N. T. Thanh¹, H. B. Kim¹, J. J. Lim¹, T.S. YOON¹, C. G. Kim¹, C. O. Kim^{2*}

¹Department of Materials Science and Engineering, Chungnam National University, 220-Gung-Dong, Yuseong-Gu, Daejeon, 305-765, Korea ²Research center for advanced magnetic materials, Chungnam National University, 220-Gung-Dong, Yuseong-Gu, Daejeon, 305-765, Korea

Multilayers soft FeCoAlO/Native-Oxides structure films with excellent soft magnetic properties and ultrahigh frequency characteristics were investigated. Multilayers consisting of discontinuous CoFeAlO layers with native-oxides surfaces were fabricated using $Co_{30}Fe_{70}$ + Al chips alloys targets with a purity of 99.95%. The background pressure was < 2.0×10^{-7} Torr. CoFeAlO films with nominal thickness of about 150 Å were deposited onto Si (100) wafer through RF reactive magnetron sputtering in Ar atmosphere. Each layer was exposed for 15 s in situ to an O_2 flow of 2 sccm, yielding a

Figure 1. X-ray diffraction patterns of [CoFeAlO (150 Å)/Native-Oxides]₃₆ multilayers thin films. (A) low angle; (B) 2θ - θ

 P_{O_2} of about 5×10^{-5} Torr. The O_2 flow was then terminated, followed by a pause for 2 minutes before depositing the next layers, which allowed the O_2 pressure to drop to its BP This was repeated until the desired film thickness was reached. The notation [CoFeAlO(150 Å)/oxide]_n denotes a structure in which each of the n unit layers consists of nominal thickness 150 Å of $(\text{Co}_x\text{Fe}_{1-x})_n$ which has been oxidized using the prior procedure. Samples were characterized structurally by x-ray diffractometer (XRD) and transmission electron microscopy (TEM). The results were shown in the figure 1. The soft magnetic properties $(4\pi M_s \sim 17 \text{ kG}, H_c < 0.3 \text{ Oe}, H_k \sim 50 \text{ Oe})$ of the multilayers films were measured by a VSM, as shown in figure 2. The electrical properties of the thin films (ρ) was measured using a four-point probe method. The ρ of [CoFeAlO(150 Å)/oxide]_n films exceeds $10^3 \mu\Omega$ cm, which is comparable to values obtained in CoFe-TM-O or metal/insulator [1-3] composites multilayers. The CoFeAlO/Native-Oxides multilayers films show $\mu_{\text{eff}} > 1000$, which is flat up to 2 GHz. The film can be a strong candidate for the materials used under ultra high frequency in GHz range.

^{*} Corresponding author. Tel.: +82-42-821-6232; fax: +82-42-822-6272. Email address: magkim@cnu.ac.kr / ndha@cnu.ac.kr

Figure 2. TEM micrograph of [CoFeAlO (150 Å)/Native-Oxides] $_{36}$ multilayers thin films. (A) Cross-sectional TEM; (B) In-plane TEM

References

- G. S. D. Beach et al, Appl. Phys. Lett., 79, 226 (2001).
 Andriy Ya. Vovk et al, J. Appl. Phys. 91, 10021 (2002).
 C. L. Chien, J. Appl. Phys. 69, 5267 (1991).