Discrimination of Multi-PD sources using wavelet 2D compression for T-F distribution of PD pulse waveform

부분방전 펄스파형의 시간-주파수분포의 웨이블렛 2D 압축기술을 이용한 복합부분방전원의 식별

  • Published : 2004.07.14

Abstract

PD(Partial Discharge) signal emitted from PD sources has their intrinsic features in the region of time and frequency. STFT(Short Time Fourier Transform) shows time-frequency distribution at the same time. 2-Dimensional matrices(33${\times}$77) from STFT for PD pulse signals are a good feature vectors and can be decreased in dimension by wavelet 2D data compression technique. Decreased feature vectors(13${\times}$24) were used as inputs of Back-propagation ANN(Artificial Neural Network) for discrimination of Multi-PD sources(air discharge sources(3), surface discharge(1)). They are a good feature vectors for discriminating Multi-PD sources.

Keywords