Pre-applied Underfill Technology

Michael Todd

(Henkel Loctite/USA)

Stencil Printed Wafer-Level **Pre-applied Underfill Application**

Michael Todd, Hao Tang, Gary Shi, Larry Crane, George Carson

Henkel Corporation 15051 E Don Julian Rd Industry, CA 91746

(Henkel) Technologies

ISMP 2004

1

Presentation Outline

- Wafer applied underfill process
- · Coating underfill on bumped wafer
 - 1) material selection
 - 2) process optimization
 - 3) uniformity and consistency
- Voids entrapment and bump contamination by printing
- Assembly results and summary

ISMP 2004

2

(Henkel) Technologies

Coating Underfill on Bumped Wafer

Underfill coating:

Several options have been explored.

Stencil printing selected:

Availability and familiarity in SMT industry.

(Henkel) Technologies

ISMP 2004

5

Stencil Printing Setup

Screen Printer:

MPM/SPM semiautomatic screen printer

Wafer:

Five (5) inch FA10 full area array bumped wafer

Stencil:

Array of openings each for each individual die

Squeegee:

Polyurethane trailing edge with various hardness

ISMP 2004

6

(Henkel) Technologies

Coating Thickness Measurement

Solarius Viking non-contact laser profilometer

- X/Y 200 mm moving platform
- Camera for viewing the surface
- 600 um measuring range
- 0.1 um vertical resolution
- 2 um laser spot size

Technologies

Technologies

Material development

All materials:

• Before B-stage:

mixed with solvent for stencil printing viscosity varied by solvent content no-Newtonian shear thinning behavior

• After 110 C 2 hours B-stage solvent removed, tacky free 60 wt% of silica fillers

Material	Α	В	С	D	E
Viscosity (cps)	2000	5000	20000	50000	200000

ISMP 2004

Material Selection

- Five materials were printed under same process parameters.
- The coating was B-staged at 110 C for 2 hours before the thickness of each die was measured individually,

Material	Average coating thickness	Street cleanliness	Uniformity (Max. minus Min.)
Α	78.5 um	Miner	11.5 um
В	82.4 um	bad	12.4 um
С	87.6 um	good	14.8 um
D	101.3 um	good	20.5 um
E	132.8 um	psq	35.6 um

• Based on street cleanliness and uniformity, C was selected for the process development.

Technologies

13

Squeegee selection

- Polyurethane squeegee selected to protect solder bump
- Squeegee hardness tested under same process parameters

Squeegee	Average	Uniformity (um)
hardness	thickness (um)	Max minus min.
50	108.7	23.4
70	94.5	17.4
90	87.6	14.8
110	91.9	16.5
metal	102.5	11.4

• By uniformity produced, hardness of shore A 90 was selected for wafer coating experiment.

ISMB WH

14

Technologies

14 -4 Technologia

Coating uniformity on a single wafer

- Coating on center tends to be thicker than around edges
- Variation of the coating thickness is about 0.6 mil (15 um)
- Standard deviation is within 5% of the average thickness

Technologies

Technologies

15

Coating consistency from wafer to wafer

	Average	Standard
Wafer	Thickness	Deviation
	(mil)	(mil)
Α	3.21	0.15
С	3.24	0.15
E	3.21	0.16
F	3.24	0.15
Н	3.27	0.16

- Eight wafers were coated for the study. Among them, five were measured thickness distribution.
- A, B, C, D and E were coated with stencil cleaning.
- F, G and H were coated without stencil cleaning.

Technologies

lechnolog_ies

Printing voids

Before B-stage

After B-stage

17

- Voids are trapped behind solder bumps during stencil printing.
- Printed film is B-staged at 110 C for 2 hours
- Voids driven out from the coating during the B-stage.

Technologies

Technologies

Solder bumps after coating B-staged

Assembly result Flux dispensed on board * 100% electrical yield * no voids ISMP 2004 Technologies * Technologies

