Assembly Technology Using Pb-free Solders: the State of the Art and Issues

Kaoru Hashimoto

(Fujitsu Laboratories Ltd./Japan)

Assembly Technology Using Pb-free Solders: the State of the Art and Issues

Kaoru Hashimoto FUJITSU LABORATORIES LTD.

ISMP 2004 (September 2-3, 2004)

Kaoru Hashimoto

Z

Outline

- Background
- Candidates for Pb-free solders
- Application of Pb-free solders
- Problems and solutions in assembly using Pb-free solders
- Sn-Zn-Al solders
- Thermal analysis for uniform heating during assembly

ISMP 2004 (September 2-3, 2004)

Kaoru Hashimoto 🕮

Assembly Technology Using Pb-free Solders: the State of the Art and Issues

Kaoru Hashimoto FUJITSU LABORATORIES LTD.

ISMP 2004 (September 2-3, 2004)

Knoru Hashimoto

1

Outline

- Background
- Candidates for Pb-free solders
- Application of Pb-free solders
- Problems and solutions in assembly using Pb-free solders
- Sn-Zn-Al solders
- Thermal analysis for uniform heating during assembly

u Hashimoto 🖼🖼

2

RoHS*1 Directive

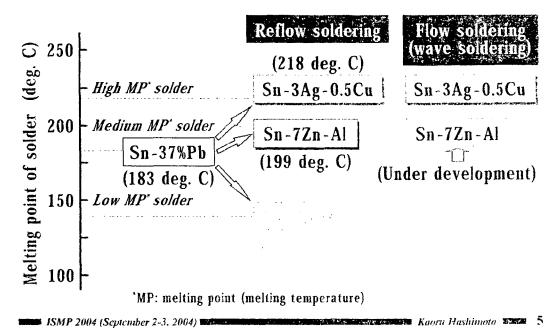
• Restriction on the use of certain hazardous substances in EEE*2

Substance	lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), polybrominated diphenyl ethers (PBDE)
Categories of EEE	Household appliances, IT and telecommunications equipment, consumer equipment, et al.
Effective date	July 1, 2006
Exemption	mercury in compact fluorescent lamps (<5 mg), lead in high melting temperature type solder, lead in glass of cathode ray tubes, et al.
Under examination	mercury in straight fluorescent lamps, lead in solders for servers, storage, et al., light bulbs, Deca BDE

¹ RoHS: Restriction on Hazardous Substances
¹ EEE: Electrical and Electronic Equipment

ISMP 2004 (September 2-3, 2004)

Candidates for Pb-free Solder


Solder	Feature	Issue
High MP* Sn-Ag Sn-Ag-Cu	 High reliability of solder joint Excellent mechanical properties High soldering temperature 	 Uniformity of soldering temp. Lift-off with Bi and Pb Improvement of heat-resistant property of component Easy to repair
Sn-Cu	InexpensiveHigh soldering temperature	• Lift-off with Pb
Medium MP Sn-Zn	 Approximately the same soldering temperature as the eutectic Sn-Pb Low cost (low material cost) Severe oxidation Unknown compatibility with surface finishes of lead and pad 	 Inhibition of oxidation Possibility of reflowing in air Reliability of solder joint
Low MP Sn-Bi	 Low soldering temperature (able to simultaneous reflow of low and high heat-resistant components) Low reliability of solder joint with Pb-containing component 	Pb-free surface finish of package and component

*MP: melting point (melting temperature)

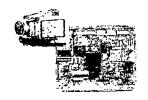
ISMP 2004 (September 2-3, 2004)

Pb-free Solder – Materials and Process

The present situation in Fujitsu

Practical Use of Pb-free Solder (1)

Company	Product	Year	Comment
Matsushita	Compact mini-disk (MD) Video tape recorder Cassette tape recorder	1998 1999 2000	Sn-Ag-Bi-ln, reflow soldering Sn-Cu (-Ni), flow soldering Sn-Ag-Bi-ln, reflow soldering
NEC	Pager Notebook personal computer	1998 1999	Sn-Ag-Cu. reflow soldering Sn-8Zn-3Bi, reflow soldering in N ₂ Flux modification Board: Au/Ni
Hitachi	Video camcorder, Refrigerator Cleaner, Washing machine, Air conditioner Notebook personal computer	1999 2000 2000	Sn-Ag-Cu, flow soldering Sn-Ag-Cu, flow soldering Sn-Ag-Cu, flow soldering
Sony	Video camcorder, TV, Notebook personal computer	2000	Sn-2.5Ag-1Bi-0.5Cu reflow soldering
Toshiba	TV, Refrigerator, Washing machine Home laundry, Cleaner	2000	Flow soldering (insertion mount)
Fujitsu	Hand-held terminal Large scale computer (server)	2000 2000	Sn-Ag-Cu Sn-Bi-Ag and Sn-Ag
Nissan	Keyless entry system	2000	Sn-Ag-Cu
Philips	Light valve	2000	Sn-1Ag-5Bi, flow soldering
Ford (Visteon)	Transceiver module for burglar alarm	2000	Solder composition is not announced.


■ ISMP 2004 (September 2-3, 2004)

Kaoru Hashimoto Estas

Practical Use of Pb-free Solder (2)

Light valve [Philips] Sn-Ag-Bi solder Reflow soldering

Video camcorder [Sony] Sn-Ag-Bi-Cu solder

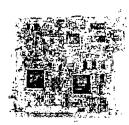
[Hitachi] Sn-Ag-Cu solder

Air conditioner

Personal Computer [Hitachi] Sn-Ag-Cu Solder

Personal computer [NEC] Sn-Zn solder

Compact mini-disk (MD) [Matsushita] Sn-Ag-Bi-In solder Reflow soldering



"Mobile Gear" [NEC] Sn-Ag solder Reflow soldering

🛚 Kaoru Hashimoto 🖼 💆 7

Practical Use of Pb-free Solder (3)

Hand-held terminal [Fujitsu] Sn-Ag-Cu solder

Large scale computer (high-end server) [Fujitsu]

[GS 8900]

Sn-Bi-Ag solder (MCM - mother board)

Sn-Ag solder (chip - MCM)

ISMP 2004 (September 2-3, 2004)

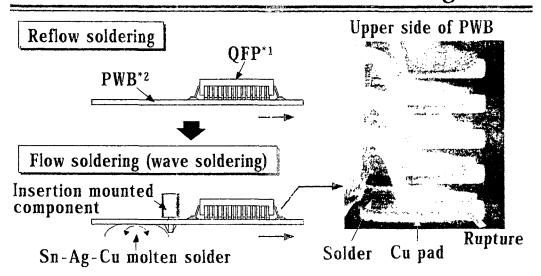
Kaoru Hashimoto 🖼 🖇

Practical Use of Pb-free Solder (4)

Sn-Ag-Cu solder (reflow soldering)

LCD (liquid crystal display) TV [Sharp] Video camcorder [Sharp]

Sn-Ag-Cu solder (flow soldering)


Refrigerator [Sharp]

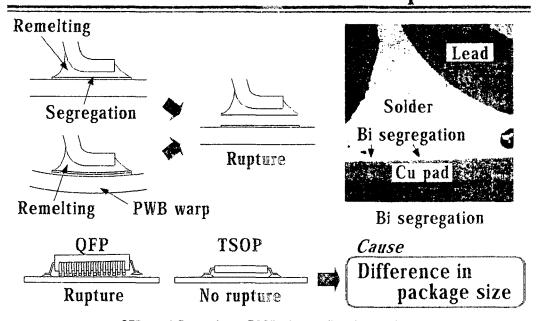
ISMP 2004 (September 2-3, 2004)

Problems and Solutions in Pb-free Solders

- Viscosity increase in solder paste
- Displacement of components
- Inspection criteria for solder joint
- Mixed use of flow and reflow soldering
- Compatibility to Pb containing metallization

Interface Rupture Occurred in Mixed Use of Flow and Reflow Soldering

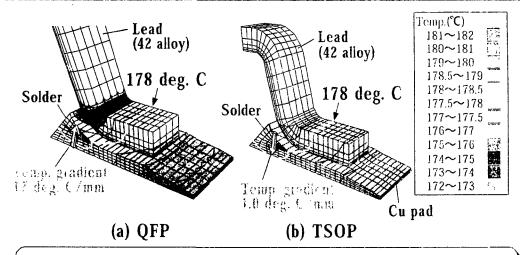
*1QFP: Quad flat package


*2PWB: printed wiring board

Source: S. Sugahara, Denshi Zairyo (Electronic Parts and Materials) Special Ed. (June 2004) pp. 92-97.

ISMP 2004 (September 2-3, 2004) Kaoru Hashimoto St.

Kaoru Hashimoto Kaza 11


Mechanism of Interface Rupture

QFP: quad flat package TSOP: thin small outline package

Source: S. Sugahara, Denshi Zairyo (Electronic Parts and Materials) Special Ed. (June 2004) pp. 92-97.

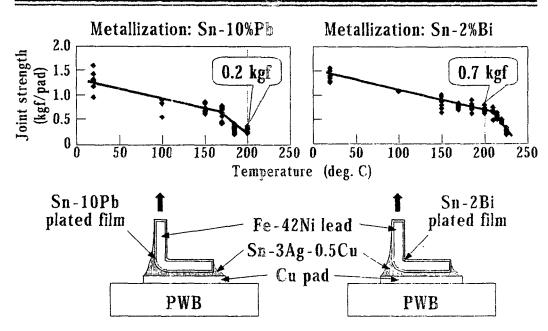
Temperature Distribution at Solder Joint

Segregation does not occur in small package with small heat capacity like TSOP because of small temperature gradient.

QFP: quad flat package TSOP: thin small outline package Source: S. Sugahara, Denshi Zairyo (Electronic Parts and Materials) Special Ed. (June 2004) pp. 92-97.

■ ISMP 2004 (September 2-3, 2004) ■

Mechanism of Interface Rupture


- 1. Formation of low melting point phase
- 2. Segregation of solder alloy element at the interface between solder and metallization (Segregation is probably induced by the temperature gradient at the solder joint)
- 3. Stress induced at the solder joint due to board warp during flow soldering

Source: S. Sugahara, Denshi Zairyo (Electronic Parts and Materials) Special Ed. (June 2004) pp. 92-97.

ISMP 2004 (September 2-3, 2004)

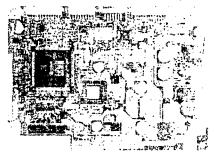
Kaoru Hashimoto 3200 14

Joint Strength at High Temperature

Source: S. Sugahara, Denshi Zairyo (Electronic Parts and Materials) Special Ed. (June 2004) pp. 92-97.

ISMP 2004 (September 2-3, 2004) **=**

Kaoru Hashimoto 388 15


Practical Use of Sn-Zn-Al Solder (1)

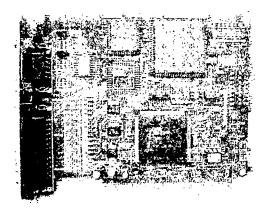
Sn-7Zn-Al solder [Fujitsu]

15 inches LCD

Printed circuit board (FR-4)

155 x 110 mm 241 components

Soldered QFP leads (pitch: 0.5 mm)


ISMP 2004 (September 2-3, 2004) 🖼

Kaoru Hashimoto 1880 16

Practical Use of Sn-Zn-Al Solder (2)

Sn-7Zn-Al solder [Fujitsu]

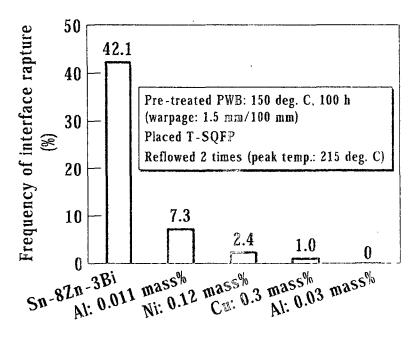
Serial parallel card (FMV-103)

Board (FR-4) Size: 150 x 100 mm Number of components: 130 LSI package lead pitch: 0.4 mm

■ ISMP 2004 (September 2-3, 2004) **■**

Kaoru Hashimoto 17

Developing Sn-Zn-Al Solder


Purpose

- 1. To lower reflow soldering temperature
- 2. To increase solder joint reliability for Cu metallization
- 3. To enhance wettability of Sn-Zn solder by inhibiting Zn oxidation
- 4. To widen application field flow soldering (wave soldering), hall soldering (BGA)

Issues

- 1. New solder alloy (the third element addition to Sn-Zn)
- 2. New flux compatible with new solder alloy
- 3. Stability of solder paste using new solder alloy (long life for storage and continuous screen printing)
- 4. Easy to inspect solder joint (less amount of flux by enhancing wettability)

Effect of Al Alloying to Sn-Zn Solder

ISMP 2004 (September 2-3, 2004)

Kaoru Hashimoto

19

Effect of Al Alloying to Sn-Zn Solder

- 1. Inhibition of Sn-Zn solder oxidation due to predominant oxidation of Al
- 2. Inhibition of water penetration into solder by dense Al oxide film (to be expected corrosion resistant property in high-temperature and high-humidity environment)
- 3. Inhibition of intermetallic compound layer at the interface between solder and metallization

Reliability of Sn-Zn-Bi Solder Joint

Reaction between Sn-8Zn-3Bi solder and surface finish

Surface finish	Initial	100 h at 150 deg. C	
Board: Cu Lead: Sn-Pb	Solden Pb-Bi Cu-Zn Cu 5um	Solder Sn-Pb-Bi Sn-Pb-Bi Sn-Pb-Bi	
Board: Au/Ni Lead: Sn-Pb	Void Ni-Zn Ni 5µm	Solder Void	

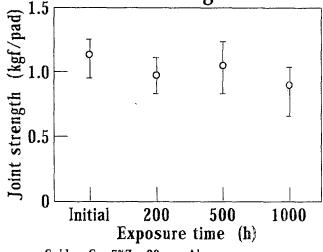
■ ISMP 2004 (September 2-3, 2004) **■**

Kaora Hashimoto 🍍

21

Reliability of Sn-Zn-Al Solder Joint

Reaction between Sn-Zn-Al solder and Sn-Pb/Cu


Solder Initial		100 h at 150 deg. C	
Sn-9%Zn (eutectic)	CID-ZID	Solder Yold Cu-Zu	
Sn-7.3%Zn- 60 ppmAl		Cu-Zu Splifeit	

ISMP 2004 (September 2-3, 2004)

Kaora Hashimoto 🕾

Reliability of Sn-Zn-Al Solder Joint

Change in joint strength after exposure to 85 deg. C and 85%R. H.

After 2000 h 200 µm

Solder: Sn - 7%Zn - 30 ppmAl Soldering condition: 215 deg. C in $\rm N_2$ atmosphere

Surface finish of board: Cu

Package: 208-pin TSQFP (lead pitch: 0.5 mm, surface finish of lead: Sn-Pb)

ISMP 2004 (September 2-3, 2004)

Assemble Process for Sn-Zn-Al Solder

Soldering

Solder wetting and spreading

Warpage of thin PWB

Repairability

Opening ratio, shape, and position im screen printing mask

Suitable fixture

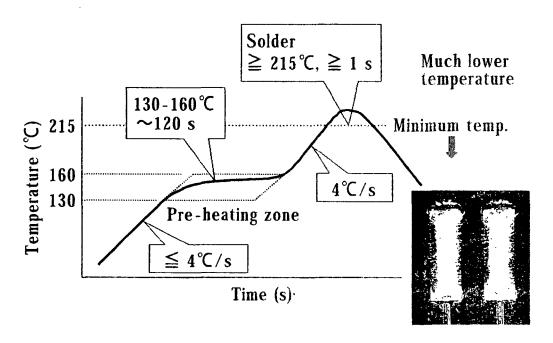
Optimum hand soldering condition (soldering-iron tip, temp. and time)

Soldering condition Optimum flow and reflow profiles

Inspection

Change in solder joint \Longrightarrow Inspection criteria confirmation, configuration

Probe for testing

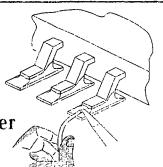

instruction/training

Contact shape and load

Ouglity of printed circuit board assembly

Assembly	Quality of solder joint Quality of electronic function		
Pb-free	1.05	0.95	
Sn-Pb	1	1	

Reflow Profile for Sn-Zn-Al Solder



■ ISMP 2004 (September 2-3, 2004) |

Kaoru Hashimoto 25

Hand Soldering for Repair

Pb-free solder wire: Sn-3Ag-0.5Cu Wettability and workability: prevention of oxidation by N2 post-flux suitable for Sn-Zn-Al solder

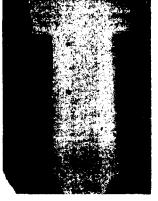
■ ISMP 2004 (September 2-3, 2004) ■

Soldered in N2 assist gas

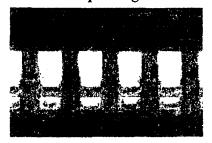
No icicle

Kaora Hashimoto 202 26

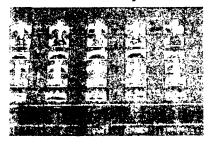
Flow Soldering Using Sn-Zn-Al Solder


LSI Package: 24 pins

Soldering: in solder pot (50 mm dia.)


in air

Board: glass cloth/epoxy Board thickness: 1.6 mm


Diameter of through hole: 0.8 mm

View of package side

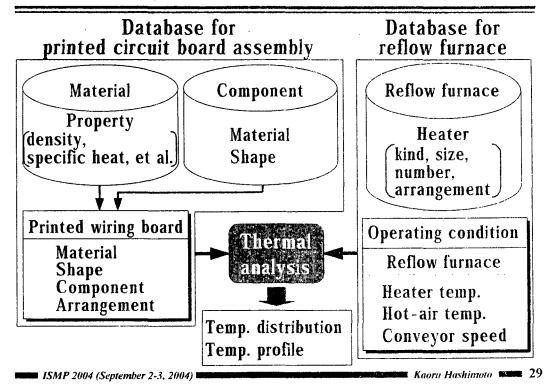
View of solder pot side

ISMP 2004 (September 2-3, 2004)

Kaoru Hashimoto 🗷

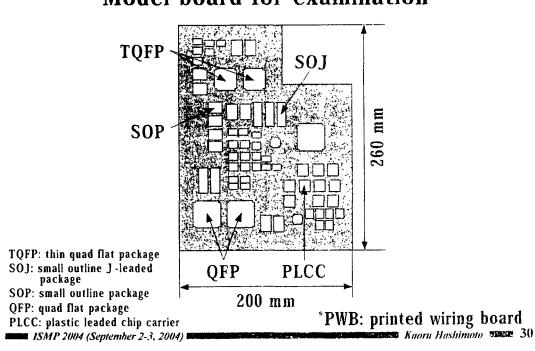
27

Sn-Zn-Al Solder

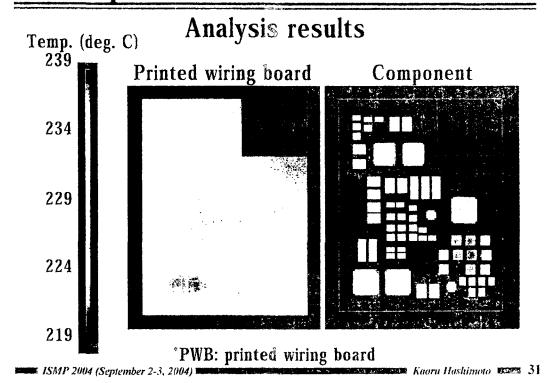

- 1. Alloying a small amount of Al can inhibit Sn-Zn solder oxidation by predominant oxidation of Al, and provide good wettability.

 This provides high reliability of solder joint with Cu metallization.
- 2. Optimum amount of Al is limited to a narrow range.
- 3. Reflow soldering process was established, and is being applied to assembly of some kinds of electronics equipment such as LCD.

More than 300000 products are shipped since December, 2002.

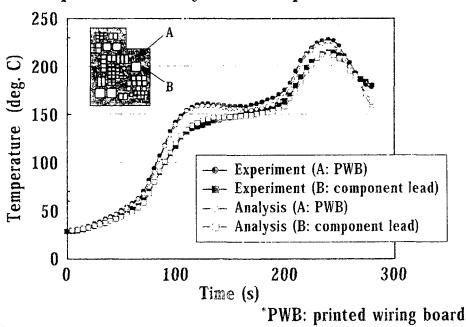

4. Possibility of flow soldering is confirmed in a preliminary study. Development using flow soldering equipment is underway, and reliability of solder joint by flow soldering is being examined.

Construction of RS-Station

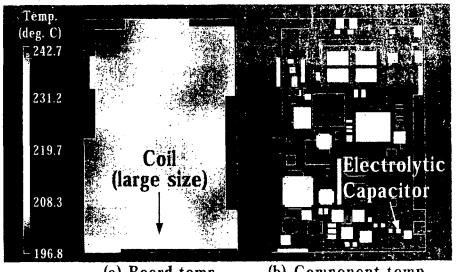


Temperature Distribution on PWB*

Model board for examination



Temperature Distribution on PWB*



Temperature Profile on PWB*

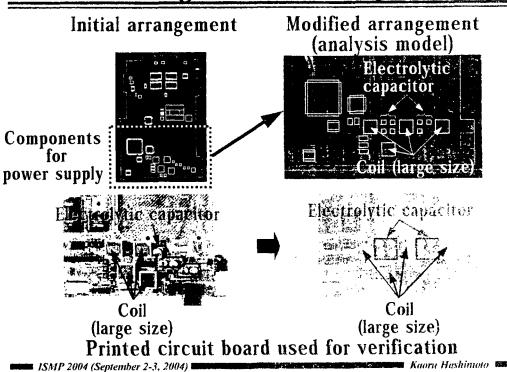
• Comparison of analysis and experimental results

Confirmation of Critical Component

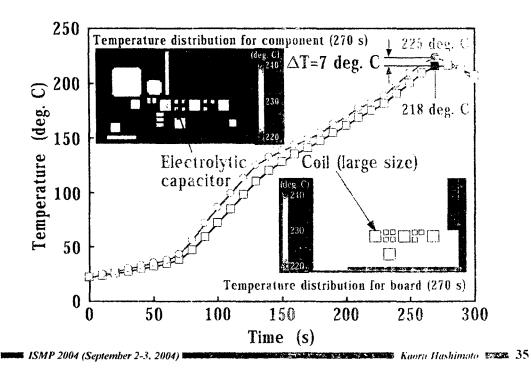
(a) Board temp.

(b) Component temp.

Min. temp (board): coil (212 deg. C)


Max. temp (component): capacitor (231 deg. C)

 $\Delta T = 19^{\circ}C$


■ ISMP 2004 (September 2-3, 2004) ■

Kaoru Hashimoto 🗯 33

Rearrangement of Component

Temperature Distribution after Rearrangement

Decrease in Temperature Difference

Effect of component rearrangement (layout change)

		Min. Temp. (deg. C) Coil (large size)	Max. temp. (deg. C) Electrolytic capacitor	ΔT (deg. C)
Before layout change	Analysis	. 212	231	19
	Experiment	212	230	18
	Difference	0	+1	_
After layout change	Analysis	218	225	7
	Experiment	216	226	10
	Difference	+2	-1	_

Thermal Analysis in Reflow Soldering

- 1. Thermal analysis plays an important role to realize uniform heating of electronic components on printed wiring board and to establish optimum temperature profile during reflow soldering.
- 2. Thermal analysis allows us to design suitable component arrangement without assembling.

 This leads to shorter turn-arround-time.
- 3. Thermal analysis is a valuable tool for establishing high quality and high-reliability printed circuit board assembly, especially in the assembly when using Pb-free solders.

1SMP 2004 (September 2-3, 2004) Kaoru Hashimoto 37