다양한 압력조건에서 과냉 유동비등의 가시화 실험 연구 Visualization Study of the Subcooled Flow Boiling under Various Pressure Condition

백기봉, 천세영, 문상기, 윤영중, 박종국 한국원자력연구소 대전광역시 유성구 덕진동 150

요약

과냉 유동비등에서 기포 특성을 디지털 스틸 카메라를 사용하여 단면 가열, 수직 사각채널에서 가시화 실험연구를 수행하였다. 실험대의 유동면적은 $10 \times 10 \text{ mm}$ 이고, 가열면적은 $3 \times 100 \text{ mm}$ 이다. 다양한 압력, 열유속, 질량유속과 국부건도 조건에서 de-ionized 물을 사용하여 실험을 수행하였다. 사진과 image processing 프로그램을 사용하여 가열부 근처 영역의 평균 기포크기를 포함하는 여러 변수들을 측정하였다. 그 결과 압력이 증가됨에 따라평균 기포크기는 감소하지만 기포수는 증가되었다. 압력이 증가하면서 $1.50 \sim 4.00 \text{ MPa}$ 범위일 때 가열벽과 유체의 온도차가 급격히 상승되었지만, 압력이 4.00 MPa를 초과하면서 가열 벽과 유체의 온도차가 급격히 감소되었다.

Applicability of Nano-fluids for a Thermal Hydraulic System : Boiling Heat Transfer Characteristics of Al₂O₃ Nano-fluids

In Cheol Bang, Soon Heung Chang, Dong Won Lee and Seung Mo Hong
Korea Advanced Institute of Science and Technology
373-1, Guseong-dong, Yuseong-gu, Daejeon, Korea, 305-701

Abstract

Boiling heat transfer characteristics of nano-fluids with nano-particles suspended in water are studied using different volume concentrations of alumina nano-particles. Pool boiling heat transfer coefficients and phenomena of nano-fluids are compared with those of pure water, which are acquired on a horizontal flat surface with highly smooth roughness of a few tens nano-meters. The experimental results show that these nano-fluids have poor heat transfer performance compared to pure water in natural convection and nucleate boiling. This is related to a change of surface characteristics by the deposition of nano-particles. Comparisons between the experimental data and the Rhosenow correlation show that the correlation has a possibility to predict the performance with an appropriate modified liquid-surface combination factor and changed physical properties of a base liquid