Effects of Sintering additives on the Sintering and Microwave Dielectric Properties of (Zn_{0.8}Mg_{0.2})TiO₃ System

Woo-Sung Sim and Jaecheol Bang
Department of Materials Science and Engineering, Soonchunhyang University

The effects of sintering additives such as $B_{12}O_3+V_2O_5$ and B_2O_3 on the microwave dielectric and sintering characteristics of $(Zn_{1-x}Mg_x)T_1O_3$ system were investigated. Highly dense samples were obtained for $(Zn_0\,_8Mg_0\,_2)T_1O_3$ at the sintering temperature range of $870{\sim}910^{\circ}\text{C}$ with $B_{12}O_3+V_2O_5$ and $B_{2}O_3$ additions. The microwave dielectric properties of $(Zn_0\,_8Mg_0\,_2)T_1O_3$ with 0.45 wt% $B_{12}O_3$ and 0.55 wt% V_2O_5 sintered at 900°C were as follows. $Q\times f_0=50,800$ GHz, $\varepsilon_r=22$, and $\tau_r=-53$ ppm/°C. In order to improve temperature coefficient of resonant frequency, T_1O_2 was added to the above system. The optimum amount of T_1O_2 was 15 mol% when sintered at 870°C, at which we could obtain following results $Q\times f_0=32,800$ GHz, $\varepsilon_r=26$, and $\tau_r=0$ ppm/°C. When B_2O_3 is added, temperature coefficient of resonance frequency(τ_f) changes to a positive value with increasing the amount of B_2O_3 because of the increased amount of rutile phase. The $Q\times f_0$ values of the B_2O_3 added system were determined by the microstructures and sintering shrinkages which in turn are affected by the existing rutile or second phases. When 6.19 mol% of B_2O_3 added and sintered at 910°C for 5 h, it exhibits $\varepsilon_r=23$ 7, $Q\times f_0=74,420$ GHz, and $\tau_r=-1$ 42 ppm/°C

P-232

MgTiO₃ 마이크로파 유전체 세라믹스의 품질계수에 미치는 열변형의 효과 Effect of Thermal Strain on the Quality Factor of Microwave MgTiO₃ Ceramics

유선희,**** 최지원,*** 윤기현,* 윤석진***
*연세대학교 세라믹공학과
**한국과학기술정보연구원(KISTI), 기술확산사업실
***한국과학기술연구원(KIST), 박막재료연구센터

마이크로파 주파수 대역에서 MgTiO₃ 세라믹스의 품질계수(quality factor)에 미치는 열 변형(thermal strain)의 효과에 대하여 냉각속도를 변수로 하여 고찰하였다 냉각속도는 각각 1℃/분, 5℃/분, 30℃/분 및 공기 중 급랭으로 변화를 주었다 냉각속도가 증가함에 따라 MgTiO₃ 세라믹스의 공진주파수에 따른 온도계수와 유전상수는 변화가 없었다 그러나 결정학적으로 반치폭(FWHM)에 의해 계산된 변화 량은 0 00565에서 0 0101로 냉각속도가 증가함에 따라 증가하였고, 품질계수는 240,000 GHz에서 150,000 GHz으로 감소하였다. 이러한 결과는 품질계수가 열 변형에 영향을 받는 것으로 판단되며, 고유손실(intrinsic loss)과 외부손실(extrinsic loss)과의 관계를 적외선분광(FT-IR) 분석을 통해 고찰하였다