Si₃N₄ Whisker Seed를 배향시킨 반응소결 질화규소 소결체의 제조와 특성 Fabrication and Properties of the Reaction-bonded Silicon Nitride with Aligned Whisker Seeds <u>백동주</u>, 박동수, 김해두, 한병동 한국기계연구원 세라믹스 그룹 본 연구에서는 $S_{13}N_4$ whisker seeds와 소결조제로써 Y_2O_3 , Y_2O_3 -AlN를 첨가한 S_1 분말을 이용하여 질화반응 및 가스압 소결에 의한 성형체를 제조하였다 $S_{13}N_4$ whisker seeds는 tape casting법을 이용하여 tape 내에서 일방향으로 배열하였으며, tape로부터 절취된 sheet들의 적층 과정을 통하여 성형체를 제작하였다 또한 소결조제의 조성을 변화시킴으로써 질화반응 질화규소 세라믹스를 제조시 나타나는 치밀화거동 및 기계적 특성에 대하여 고찰하였다 또 비교를 위해서 whisker seeds를 첨가하지 않은 시편의 특성도 조사하였다 ## E-6 Negative Thermal Expansion up to 1000°C of ZrTiO₄-Al₂TiO₅ Ceramics Having Long-term Thermal Durability Ik Jin Kim, Hyung Chul Kim, Sung Chul Lee,* Seung Joo Lee,* and Oh Chul Kwon Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, Seosan City, Chungnam, Korea *Dongil Ceramics Co., LTD, #309-3 Samgae-ri, Pogok-Myun, Yongin-city, Kyunggi-do, Korea Thermal-shock-resistant materials based on Al_2TiO_5 - $ZrTiO_4$ (ZAT) were synthesized by oxide process. The range of ZAT compositions sintered at 1600° C had a negative thermal expansions up to 1000° C and very lower thermal expansion coefficient (0.3~1.3×10⁻⁶/K) than that of polycrystalline Al_2TiO_5 , $1.5×10^6$ /K. The ZAT composites also had a good thermal durability at 1100° C for 100 h. The low thermal expansion and high thermal durability are apparently due to a combination of microcracking caused by the large thermal expansion anisotropy of the crystal axes of the titanate phase and a contractive phase transformation by the $ZrTiO_4$. The microstructural degradation of the composites is presented here analyzed by scanning electron microscopy, X-ray diffraction, and dilatometery