PDP 유전체용 BaO-ZnO-B₂O₃-V₂O₅ 유리의 제조 및 특성 변화

Preparation and Properties of BaO-ZnO-B₂O₃-V₂O₅ Glass for PDP Dielectric Paste

<u>손명모</u>, 이헌수, 박재현*, 박희찬* 대구공업대학 보석귀금속과 *부산대학교 재료공학부

PDP(Plasma Display Panel)용 유전체층 재료개발에서 주요한 과제는 저온 소성용 paste 및 환경 친화적인 PbO free paste의 개발이다 본 연구에서는 PbO free paste 제조의 일환으로 550~570℃의 소결조건에서 충분히 융착되는 BaO-ZnO-B₂O₂-V₂O₅계의 무연 프리트 유리를 개발했다

부분 glass former인 V_2O_5 와 저용점 glass former인 B_2O_3 의 조성비에 따라 550° C 영역에서 회색 및 혹 갈색 색상의 완전한 glass matrix를 얻을 수 있었다 V_2O_5 의 조성에 따른 연화온도의 변화와 열팽창계수 유전율등의 변화를 조사하였다 V_2O_5 와 B_2O_3 의 적절한 조성영역에서 glass가 이루어지며, V_2O_5 가 B_2O_3 보다 너무 많으면 실투를 유발시켰다 V_2O_5 , 30 wt% 첨가시료의 경우 $550\sim560^{\circ}$ C, 10분 이내에 충분한 융착이 되는 glass층을 얻을 수 있었다

P-280

Enhancement of sp³ Hybridized Bonding Characteristics of Amorphous Carbon (a–C) Films by Physical Ion Bombardment and Chemical Bond Modification

Hae-Suk Jung, Hyung-Ho Park, R. Mendieta*, D. A. Smith*

Department of Ceramic Engineering, Yonsei University

*Department of Physics and Astronomy, University of Leeds, United Kingdom

We have reported a novel method of increasing sp^3 hybridization fraction in sputtered amorphous carbon (a-C) film by the combination of Ar ion bombardment and Si incorporation. In the deposition of a-C films, Ar ion bombardment plays a role of creating high stress in film and causes the local bonding configuration to change to sp^3 hybridized bond. Simultaneously, the incorporated Si in a-C network breaks the sp^2 hybridized bonded ring and promotes the formation of sp^3 hybridized bond. This enhancement of sp^3 hybridized bonding characteristics is maximized for a-C film with 23 at% of Si between 100 and 150 V. In this region, the increase of resistivity, optical bandgap, and mechanical hardness of a-C is attributed to the reduction of sp^2 hybridized bonded ring and increased fraction of sp^3 hybridized bond. It is also revealed that the electronic properties of a-C are dependent on the bonding structure of sp^2 hybridized carbon bond as well as its fraction. However, at higher bias voltage, the enhancement effect is reduced due to the resputtering and thermally activated reconversion of sp^3 to sp^2 hybridized bond