[F18] ## A study of phase control and Mössbauer spectra of nano γ-Fe₂O₃ particles synthesized by the levitational gas condensation (LGC) method C. K. Rhee*, Y. R. Uhm, and W. W. Kim Korea Atomic Energy Research Institute, 150 Duckjindong Yusonggu Daejeon, Rep.Korea Nanoparticles of γ -Fe₂O₃ have been prepared by the levitational gas condensation (LGC) method, and their structural and magnetic properties were studied by TEM and Mössbauer spectroscopy. Fe clusters evaporate from a surface of the levitated liquid Fe droplet and then condensate into nanoparticles of γ -Fe₂O₃ with particle sizes of 14 to 30 nm in a chamber filled with Ar and O₂ gases. From the main peak intensities of XRD and analyses of Mössbauer spectra, the amount of γ -Fe₂O₃ and α -Fe in the sample is composed about 93 % and 7 %, respectively. Mössbauer spectra consist of two sets of six Lorentzian lines corresponding to γ -Fe₂O₃ and α -Fe. It was found that phase transformation into Fe₃O₄ from both Fe₂O₃ and Fe depends strongly on increasing O₂ flow rate ($0.05 \leq V_{O_2}$ (l/min) ≤ 0.2) in the chamber.