[SP-16]

Investigation of HfO₂-Al₂O₃ laminate and Hf-Al-O films with poly-Si Gates.

J.Hua¹, S.W.Lee¹, H.J.Kang¹, Y.S.Lee², K.Y.Lim³, H.J.Cho³, N.K.Lee⁴

Department of Physics, Chungbuk National University, Div. of Information Communication & Computer Eng.²,

Hynix Semiconductor Inc.³, Genus Korea Co. Ltd⁴

In metal-oxide semiconductor (MOS) devices, high-k materials have been studied for film thickness and thermal stability on Si, Recently, HfO2 system has been widely studied since their suitable dielectric constants can effectively reduce the leakage current and it has been known to be thermodynamically stable in contact with Si.

HfO₂-Al₂O₃ laminate and Hf-Al-O films were deposited on SiO₂ layers at 300 °C using Atomic Layer Deposition (ALD) technique. Changes of film structures and chemical states in HfO₂-Al₂O₃ laminate and Hf-Al-O films by rapid thermal annealing at 900 °C for 30 sec were investigated by x-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy. In addition, the electrical properties were studied by I-V and C-V characteristics.

This work was supported by KOSEF (R04-2002-000-00009-0) and KRF Grants (KRF-2001-015-DP0193).