[S-01] ## Study on La_{1-x}Ca_xMnO₃ films by x-ray absorption spectroscopy <u>박형건</u>¹, 박상윤¹, 이영백¹, 이연승², 김기원³, 신현준⁴ ¹Quantum Photonic Science Research Center and Department of Physics, Hanyang University, Seoul, 133-791 Korea ²Div. of Inf. Comm. & Comp. Eng., Hanbat Nat'l Univ., Daejeon, 305-719 Korea ³New Material Science, Sunmoon University, Asan, 336-708 Korea ⁴Pohang Accelerator Laboratory, Pohang, Kyungbuk, 790-784 Korea Perovskite-like manganese oxides have been intensively studied because of their interesting science, connected with the discovery of colossal magnetoresistance, and their potential device applications. Especially, La_{1-x}Ca_xMnO₃ thin films are known to be the most suitable candidate for the practical applications, partly because it displays high metal-insulator transition temperature and Curie point. The La_{1-x}Ca_xMnO₃ thin film has Mn³⁺ and Mn⁴⁺ mixed valence state and shows various physical properties by the mixed state variation. In this study, a LaAlO₃ (001) single crystal was used for the substrate and the rf magnetron sputtering method was employed for the deposition. The crystal structures of the films were determined by using x-ray diffraction. We observed that the properties of La_{1-x}Ca_xMnO₃ films turn out to be strongly relevant to the mixed valence state, by means of the La M_{4.5-}, the Ca L_{2.3-}, the Mn L_{2.3-} and the O K-edge of the near- edge x-ray absorption fine structure (NEXAFS). The NEXAFS spectra were obtained at the U7 undulator beamline of the Pohang Light Source.