[SP-11] Photoemission spectroscopy of Mn-site doped charge-ordered system: Nd_{0.5}A_{0.5}Mn_{1-v}CryO₃(A=Ca, Sr) 한상욱, 김건호*, 정재인**, 최은집+, 김장희, 강정수++ *경상대학교 물리학과 및 기초과학연구소, **포항산업과학연구원, +서울시립대학교 물리학과, ++가톨릭대학교 물리학과 Manganese perovskite oxides of R_{1-x}A_xMnO₃ (RAMO; R: rare earth, A: divalent alkaline earth metal) have been intensively investigated due to their colossal magneto-resistance (CMR) phenomena and the rich phase diagram of these materials, which includes such phenomena as the charge-ordering (CO) and the metal-insulator (MI) transitions. In particular, a few percent of impurity substitution (e.g., Cr) on Mn sites in R_{0.5}A_{0.5}MnO₃ drastically melts the CO and orbital ordered (CO-OO) state and makes the system ferromagnetic-metallic⁽¹⁾. However, the melting mechanism and the nature of the metallic state are not well understood yet. In order to understand the role of the electronic structure in the metal-insulator transition in impurity-doped R_{0.5}A_{0.5}MnO₃, we have performed resonant photoemission spectroscopy measurements for Nd_{0.5}A_{0.5}Mn_{1-y}Cr_yO₃ crystals by changing the divalent alkaline earth metals (A=Ca, Sr) and the impurity substitutes (y=0.07, 0.05). Resonant photoemission spectra have clearly revealed the Nd 4f, Mn 3d and Cr 3d contributions. High-resolution photoemission spectra near the Fermi level show differences in the electronic states due to a small deviation of impurity substitutes. ## [참고문헌] 1. T. Kimura et al., Phys. Rev. Lett. 83, 3940 (1999).