P69

Antifungal compound from Bacillus sp. TBM912

Ki Wook Kim¹, Yun Ui Bae¹, Ju Soon Yoo¹, Soo Dong Cho²

Ja Young Moon⁴, Young Kee Jeong⁵

and Woo Hong Joo^{1,3}

¹Institute of Genetic Engineering, ²Institute for Basic Science, ³Department of Biology, ⁴Department of Biochemistry and Health Science, Changwon National University, Changwon 641–773, Korea. ⁵Department of Microbiology, Dong–Eui University, Pusan, Korea

A continuous enrichment culture procedure was used to isolate bacteria from various soil sources capable of suppressing large patch disease of turfgrass. Six isolates consistently suppressed large patch in turfgrass, and ranged in the spectrum of extracellular enzymes that they expressed. The best disease-suppressing isolate, TBM912, expressed protease, CMCase, and pectinase activity and inhibited the growth of *Rhizoctonia solani* and *Botrytis cinerea* in vitro. Here we show that this strain also produces an antibiotic that was purified by TLC and HPLC and identified by SDS-PAGE analysis as lipopeptide.