Fabrication of Cu-Sheathed YBCO Thick Films by using Screen Printing Method with Y211 and BaCO₃ Powders K. J. Kim^{*,a}, S. C. Han^a, Y. H. Han^a, B. S. Park^a, N. H. Jeong^a, H. J. Yun^a, J. M. Oh^a, H. R. Choi^b, T. H. Sung^a ^a Korea electric power research institute, Taejeon, Korea ^b Pukyung National University, Pusan, Korea We fabricated YBCO thick films by using screen printing method with Y211 and BaCO₃ powders on Cu-substrate in N₂ atmosphere. Cu-sheathed YBCO thick film process is more simple and economic than YBCO coated conductor methods. The heat treatment is performed in the range of 860 – 875 °C for 5min in the tube furnace of N₂ atmosphere. The flow rate of N₂ gas is fixed 60 ml/min. Microstructure and phases of thick films were investigated by optical microscope, X-ray diffraction(XRD) and SEM. At heat-treatment temperature, the thick films were in a partially molten state by liquid reaction between CuO of oxidized copper sheath and the powders which were printed on Cu-sheath. During the heat-treatment procedure, YBCO superconducting particles nucleate and grow in preferred orientations. Keywords: partial melting, Cu-sheath, screen printing, N2 gas