AC Susceptibility of High T_c Superconducting Tl_{0.8}Pb_{0.2}Bi_{0.2}Ca_{2.2}Cu₃O_x.

R. Baek ^a, Y. C. Kim ^a, D. Y. Jeong ^b

^a Department of Physics, Pusan National University, Busan 609-735, Korea ^b Korea Electrotechnology Research Institute, Changwon, Korea

The polycrystalline $Tl_{0.8}Pb_{0.2}Bi_{0.2}Ca_{2.2}Cu_3O_x$ was synthesized by the solid state reaction method. The dependence of AC susceptibility on temperature and ac applied field was studied. The critical temperature T_c is about 120K. As the ac field is increased, the slope and the value of real part of susceptibility become smaller and the peak position of imaginary part T_p was shifted to a lower temperature with peak broadening. Using Bean model, we determined intergrain critical current density J_c and obtained 272 A/cm² at 80K.

From the relation of the $J_c(T)=(1-T/T_c)^{\beta}$, we obtained $\beta=0.7$ and found that the Josephson junction type of the $Tl_{0.8}Pb_{0.2}Bi_{0.2}Ca_{2.2}Cu_3O_x$ is SIS type.

keywords: AC susceptibility, Josephson junction