Surface Impedance of YBa₂Cu₃O_{7-δ} and SmBa₂Cu₃O_{7-δ} Films on CeO₂-buffered Nickel Tape

J. H. Lee^{*,a}, W. I. Yang^a, M. J. Kim^a, Sang Young Lee^a, K. C. Chung^b, D. Youm^b

^a Department of Physics, Konkuk University, Seoul 143-701, South Korea

^b Department of Physics, Korea Advanced Institute of Science and Technology, Daejon 305-701, South Korea

Flexible HTS superconductor films grown on nickel substrate provide a way to develop long HTS superconductor tapes of high quality, which has been needed for various large scale applications. YBa₂Cu₃O_{7- δ} (YBCO) with the critical current density (J_C) of 2 x 10⁵ – 1 x 10⁶ A/cm² at 77 K and SmBa₂Cu₃O_{7- δ} (SBCO) films with the J_C of 2 x 10⁵ A/cm² are fabricated on flexible, bi-axially textured Ni tapes with the thickness of ~ 70 μ m. Typical effective surface resistance (R_s) of ~ 800 m Ω are observed at 70 K at 8.6 GHz for both YBCO and SBCO films. A TE₀₁₁ mode rutile-loaded resonator is used for obtaining the R_s values of SBCO films appear to decrease by ~ 3 % after the films are wound around a 3 mm-in-diameter rod with the SBCO films pointing outward. The temperature dependence of the R_s of both YBCO and SBCO films, as well as usefulness of the dielectric-loaded resonator method for investigating the uniformity of the long HTS superconductor tapes are discussed.

keywords: Ni tape, YBCO, SBCO, microwave surface resistance.