Influence of Ag Nanoparticle Additions on the Superconducting Properties of MgB₂ Materials K. J. Song, S. J. Choi, S. W. Kim, J. H. Joo, H. J. Kim, J. K. Chung, R. K. Ko, C. Park, E. Y. Lee, and Y. K. Kwon Applied Superconductivity Group, Korea Electrotechnology Research Institute, Changwon, Korea The development of MgB₂ wires/tapes has been taken a growing interest in the practical applications by many advantages, such as the rapid and reliable compound synthesis, the commercial availability of MgB2 powder, and the relative simplicity in structure and components. The high critical current density of the developing MgB₂ wires/tapes can be one of key factors for applications in the presence of magnetic fields. To enhance the current carrying capability of MgB₂ wires/tapes, we should add some pinning centers in these materials. High temperature exposure to Ag metal is common in the fabrication of high-T_c tapes and wires (PIT BSCCO tapes), where Ag is generally thought to favorable. The Ag nanoparticles in the MgB₂ matrix can act as pinning centers and improve the connectivity of MgB₂ powders in the fabricated MgB₂/Ag wires/tapes. Therefore, a series of superconducting MgB₂ materials, containing Ag nanoparticle additions with 10 to 50 wt.%, has been studied. Bulk samples of MgB₂/Ag were prepared with wt.% Ag nanoparticles added using a simple solid-state reaction route. 10 to 50 wt.% Ag nanoparticle added MgB₂ powders were first cold pressed into a pellet form. The pellets were then sealed in stainless steel tube and sintered at 850°C for two hours with Ar atmosphere. Characterization methods included X-ray diffraction, SEM, and studied of the magnetization M. The isothermal magnetizations M(H) of a series of samples were measured at temperatures between 5 and 50 K in fields up to 6 T, employing a PPMS-9 (Quantum Design). The critical current density (Jc) values have been obtained from the M(H) data. using Bean model, for the bulk samples of MgB₂/Ag. We discuss the influence of Ag nanoparticle additions on the superconducting properties of MgB₂ bulk superconductors. These and other results will be discussed. keywords: MgB₂ powders, Ag nanoparticle, sintering or non-sintering, critical currents, magnetization