Reversible Magnetic Properties of Aligned High T_c - Superconducting S_mBa₂Cu₃O_x Powder Composites J. H. Lee^a, H. Kim^a, Y. C. Kim^a, D. Y. Jeong^b ^a Pusan National University, Busan, Korea ^b Korea Electrotechnology Research Institute, Changwon, Korea We have carried out magnetization measurements on aligned high- T_c superconducting SmBa₂Cu₃O_x powder composites in the magnetically reversible region, with the applied field parallel to the c axis. By employing a model suggested by Hao et al. [Phys. Rev. B 43, 2844(1991)], the values of the penetration depth, the coherence length, and the critical fields are obtained along with the Ginzburg-Landau parameter κ_c . The results show that, below 80K, κ_c of SmBa₂Cu₃O_x decreases slowly as expected by the theoretical calculations. Additionally, we have extracted the penetration depth λ near T_c again from linear relations of magnetization versus lnH. The $\lambda(T)$ results are consistent with the behavior expected from BCS theory. keywords: aligned high T_c - superconductor, Ginzburg-Landau parameter, SmBa₂Cu₃O_x