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Abstract 

In order to avoid the unit inconsistency problem in the conventional Jacobian matrix, previously we 
presented new formulation of a dimensionally homogeneous inverse Jacobian matrix for parallel manipulators 
with a planar mobile platform by using three end-effector points based on the velocity relationship [1]. This 
paper presents force relationships between joint forces and Cartesian forces at the three End-Effector points. 
The derived force relationships can then be used for analyses of the input/output force transmission. These 
analyses, forward and inverse force transmission analyses, depend on the singular values of the derived 
dimensionally homogeneous Jacobian matrix. Using the proposed force relationship, a numerical example is 
presented for actuator size design of a 3-RRR planar parallel manipulator.

1. Introduction 

In order to avoid unit inconsistency problem in the  
conventional Jacobian matrix for parallel manipulators, 
Kim and Ryu [1] proposed a new inverse Jacobian 
formulation based on the three End-Effector (EE) point 
coordinate. The derivation was based on a velocity 
relationship between actuator joint space and Cartesian 
space that is composed of three EE point coordinates. 
However, a question arises: can this new Jacobian be 
used to describe the force relationship between the joint 
and Cartesian spaces? This paper answers the question 
by presenting the force relationship between actuator 
joint forces and Cartesian forces at three EE points.  

When a parallel manipulator executes a given task, 

such as grinding, grasping, brushing, lifting up, and so on, 
its end-effector exerts forces and moments on workpiece. 
These forces and moments are generated by actuators of 
the parallel mechanism in the joint space. Hence, finding 
force relationship between task and joint spaces is a 
practical and basic requirement in the design and control 
of robot manipulators. The force relationship can then be 
used for analysis of the input/output force transmission. 
These kinetostatic performance analyses can provide 
essential information [2-5] such as how much task forces 
can be produced by applied actuator forces. They also 
provide a basis for structural design of the links and 
bearings of a robot manipulator and for selection of 
appropriate size of actuators. For physically meaningful 
force relationship, however, unit consistency of Jacobian 
matrix is necessary, since the force transmission analysis 
depends on the singular values or condition number of 
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This paper is organized as follows; Section 2 describes 
inverse and forward force relationships between the joint 
and the Cartesian spaces at three EE points based on the 
dimensionally homogeneous Jacobian matrices. The next 
section presents force transmission analyses with the 
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derived force relationships. Section 4 illustrates a 
numerical example to select actuators based on the 
previous inverse force transmission analysis method. 
Conclusions are presented in the last section. 

2. Force Relationships between Joint and 
Cartesian Spaces    

2.1 Inverse Force Relationship   
Consider a general 6-6 parallel manipulator with a 

planar mobile platform as shown in Fig. 1.  Here, the 
platform joints Bi (i = 1, 2,…, 6) are assumed on the 
same moving plane while the base joints denoted by Ai 
are not necessarily on a plane. Let q be the vector 
defined by the coordinates of three EE points describing 
the motion of the mobile platform: 

               (1) Tzyxzyxzyx ],,,,,,,,[ 333222111=q
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Fig. 1 6-6 General parallel manipulator (GPM). 

Since Bi and Tj points are on the same plane of a 
mobile platform, the coordinates of the platform joints Bi 
in the absolute coordinate frame can easily be expressed 
in terms of the coordinates of the three EE points (Fig. 2) 
as 
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Fig. 2 Representing the coordinates of the platform 
joints in the coordinates of the three EE points 
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where ki,j (i =1, 2,..,6;  j = 1, 2, 3) are dimensionless 
constants and 13,2,1, =++ iii kkk . Indeed, this is true 

because,               (3) 3 ,1 3 1 ,2 3 2i i ik k= + +OB OT T T T T

Note that if all platform joints are not in the same plane 
with the three points, the expression in Eq. (2) will be 

more complicated and the following derivation should be 
changed substantially. 

The coefficients ki,j  in Eq. (3) are functions of the 
geometry of the mobile platform joints Bi and the pre-
selected three points Tj.  If the global vectors are 
transformed to the local moving reference frame, Eq. (3) 
can be written as 
        

,1 1 ,2 2 ,1 ,2 3(1 )i i i i ik k k k′ ′ ′= + + − −B T T ′T          (4) 

where i
′B and j

′T points are (2×1) constant vectors 

with x′  and y′  coordinates in the reference frame fixed 
on the mobile platform. Rewriting Eq. (4) gives  
 

3 ,1 1 3 ,2 2 3( ) (i i ik k )′ ′ ′ ′ ′− = − + −B T T T T T ′ ,  i = 1, 2,…,6   (5) 

Then, for each i, the two unknowns (ki,1 and ki,2 ) in Eq. 
(5) can be obtained in terms of constant 

i
′B and 

j
′T coordinates as long as the three EE points are distinct 

and noncollinear. The practical choice of three points, 
however, is governed in part by numerical conditioning 
of Eq. (5).  Since equilateral triangular layout of three 
points with the triangle center at the geometric center of 
Bi points generates good numerical conditions, it is 
recommended for the optimal design of an axi-
symmetrical mobile platform[1].   

The new Jacobian matrix by using the three EE 
points can be derived as follows: First, consider the 6-dof 
Gough-Stewart parallel manipulator which has six 
translational actuators.  The inverse kinematic 
relationship from the motion of the moving platform to 
the actuator lengths can easily be derived as 

   ,1 1 ,2 2 ,3 3

,1 1 ,2 2 ,3 3

 
       

i i i i i i i i

i i i i

A B k k k
k k k
λ= = + + −

= + + −

n OT OT OT O
t t t a

A      (6) 

where iλ  is the magnitude of the actuating length and ni 
is a unit vector. Time differentiation of Eq. (6) with 
respect to the fixed world coordinate system gives                  
                   (7) 

,1 1 ,2 2 ,3 3i i i i i i ik k kλ λ+ = + +n n t t t

where  [ ], , T
i i i ix y z=t    

Since  is a unit vector,  and in 1T
i i =n n 0T

i i =n n . 

Therefore, multiplication of with Eq. (7) gives T
in

                   (8) 
,1 1 ,2 2 ,3 3

T T
i i i i i i ik k kλ = + +n t n t n tT

The velocity relationship between actuator joint space 
and Cartesian space that is composed of three EE point 
coordinates can then be expressed as [1]  
                    = JqΛ                  (9) 

where 
1 2 3 4 5 6, , , , , ,

T
λ λ λ λ λ λ⎡ ⎤= ⎣ ⎦Λ                                

and [ ]1 1 1 2 2 2 3 3 3, , , , , , , , Tx y z x y z x y z=q   

This inverse Jacobian matrix J is an actual Jacobian, i.e., 
a matrix of partial derivatives of Cartesian coordinates 
with respect to the joint variables. If the three EE points 
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are on the plane in which iB  points are located, the 
matrix J then can be compactly given as  

 

              (10) 

1,1 1 1,2 1 1,3 1

2,1 2 2,2 2 2,3 2

3,1 3 3,2 3 3,3 3

4,1 4 4,2 4 4,3 4
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where  denotes the unit vectors along vector in i iA B  

and are constants. Note that all elements in the new 

(6×9) Jacobian matrix are dimensionless because k
,i jk

i,j and 
unit vectors are dimensionless.  Note also that it can be 
shown that we can have a dimensionally homogeneous 
Jacobian matrix even if the three EE points are not on the 
same plane in which iB  points are located. In this case, 

the (6×9) inverse Jacobian matrix can be derived only in 
a numeric form. 

F1

c2

F2

F3

T1

T2

T3

c1 c3

 
Fig. 3 External forces at three EE points on mobile 

platform 
Tsai [8] and Asada [9] had derived force relationship 

between joint forces and Cartesian forces. However, in 
this paper, we utilize the coordinates of three different 
points at the end-effector to characterize the kinematic 
and force relationship. This gives a solution to the unit 
inconsistency problem in the conventional Jacobian 
matrix. Basing this idea we should present a new 
formulation of force relationships between actuator joint 
forces and Cartesian forces.   

In order to derive a new force relationship between 
actuator joint forces and Cartesian forces at three EE 
points, it is assumed that every force and moment on the 
mobile platform is decomposed into point forces ( F1, F2, 
F3 ) at three points ( T1, T2, T3 ) that may be considered 
as three grasping points or three connecting joints to the 
mobile platform (say; 1 3 5, ,B B B ) as shown in Fig. 3. 
Note that the decomposition is not unique. In the 
conventional force relationship, joint space forces are 
mapped into Cartesian space forces as a combination of 
three translational forces at the origin of mobile platform 
reference frame and three torques about the local 
reference frame axes. In this case, the Jacobian loses its 
dimensional homogeneity. From Eq. (9)  the virtual 
displacement relationship can be written as  

                  δ δ=Λ J q                 (11) 
Then, virtual work principle can be stated as                   

                        (12) W T T  δ δ δ =τ Λ F q= − 0

0

where the force vector F includes every internal or 
external force that is applied equivalently at three EE 
points. 

Inserting Eq. (11) into Eq.(12) gives  
             (              (13) )T T  δ =τ J F q−

The elements in the virtual displacement vector δq are 
not independent due to the following distance 
constraints: 2( ) ( )T

i i j i j ic 0Φ = − − − =T T T T         (14) 

for ( i, j ) = (1,2),(2,3),(3,1)                     
where  ’s are the constant distances between Tic i and Tj 

points. Therefore, 0qδ δ= =Φ Φ q                (15)     

where  can be expressed as  
qΦ
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− − −⎢ ⎥
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Φ

     (16) 

From Eqs. (13) and (15), the Lagrangian multiplier 
theorem [10] states that                           

          ( ) 0T T T
q  δ+ =τ J F α Φ q−          (17) 

where  is the  (3×1) Lagrangian multiplier vector 
that can be physically interpreted as the constraint 
reaction forces among the three rigid points on the 
mobile platform. 

α

Since Eq. (17) is true for any arbitrary δq vector, the 
Cartesian forces are represented as                              

                          (18) T T
q= +F J τ Φ α

From Eq. (16), the second term in Eq.(18) can be 
rewritten as 

1 1 2 3 3 1

1 1 2 3 3 1
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1 12 3 13
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⎥ +⎡ ⎤⎥
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⎢ ⎥+⎥ ⎣ ⎦

⎥
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f f
f f
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(19) 

where the force vector  acts along the line as 

shown in Fig. 4. Therefore, these forces are in a single 
ijf i jTT
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plane and are self-equilibrated (self-canceled). 

T2

T3

α2f23

T1

α1f21

α3f13

α1f12

α2f32

α3f31

 
Fig. 4 Self-canceling internal forces at three EE points 

on mobile platform. 
The fact that the term  is a self-canceling 

internal force vector means that this term has no 
relationship with the external Cartesian forces at three 
EE points. 

T
qΦ α

 

Therefore, only the term  is directly related to the 
external Cartesian forces at three EE points and Eq.(18) 
can be restated as                     (20) 

TJ τ

T
ext =F J τ

Since the dimensionally homogeneous Jacobian 
matrix is used in Eq.(20), this equation can be used in the 
optimal design and control of parallel manipulators 
without any scale-varying problems. 

 
2.2 Forward Force Relationship 

Joint forces may be obtained from Eq. (20) that can be 
rewritten in a linear equation form as                                      

                                (21) T
ext=J τ F

where , , and . This 
equation, however, represents an overdetermined system 
of linear equations. For convenience, this equation can 
be modified to an underdetermined system using the 
other “direction” of the mapping [11] that is more useful 
for the forward force transmission problem. 

T n×∈ℜJ m m∈ℜτ n
ext ∈ℜF

The end effector(C) of a GPM is shown in Fig. 1 
where the reference frame (O - xyz) is fixed to the 
base of the GPM while frame 

ℜ
′ℜ (O x ) is attached 

to the origin of the mobile plate. The twist of end 
effector(C) can be defined as  

y z′ ′ ′− ′

⎤⎦                              (22) ,
TT T

c c⎡= ⎣x v ω

where is the velocity of the origin of the mobile 

frame and  stands for the angular velocity vector of 
the platform.  

cv
ω

Now, in order to obtain the new transformation 
Jacobian matrix that is mapping from the twist of end 
effector(C) to the Cartesian velocity of three EE points Tj 
(j = 1, 2, 3), we should derive the kinematic relationship 
between vectors and . This can be written as cx q

                  
q c=q J x               (23)  

where  is a (9×6) transformation matrix. The 

position vectors of three EE points with respect to 
qJ

O′will be given by 
     [ ] [ , , ]T

j j j jO T x y z′ℜ j′ ′ ′ ′= =T ′ , (j = 1, 2, 3)      (24) 

where the prime means that the vector is represented 
with respect to the body reference frame.  

Let the rotation matrix representing the change of 
coordinates from ′ℜ to ℜ  be denoted by R matrix. The 
R matrix can be written as 

           
11 12 13

21 22 23

31 32 33

r r r
r r r
r r r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R              (25) 

The position vectors of three EE points with respect 
to will be given by O
    , (j = 1, 2, 3)        (26) [ ] [ , , ]T

j j j jOT x y zℜ= =T j

Therefore, the velocity equations will be given by 
[ ] [ , , ] [ ] [ ]j j j j c jx y z ωℜ ℜ= = + ×t v ℜT , (j = 1, 2, 3)   (27)            

which leads to a transformation matrix, . 
qJ

Then, by using the notation of [12], the standard 
velocity equations of the parallel manipulator can be 
written as           

x cΛ =J Λ J x               (28) 

where ΛJ  and xJ  are the conventional non-

homogeneous (6×6) inverse and forward Jacobian 
matrices. 

These will be given by                              

               (29) 

1 1 1

2 2 2

6 6 6

6 6

( )
( )

,  and

( )
(6 6 identity matrix)

T T

T T

x

T T

Λ ×

⎡ ⎤×
⎢ ⎥×⎢ ⎥=
⎢ ⎥
⎢ ⎥

×⎢ ⎥⎣ ⎦
= ×

n b n
n b n

J

n b n
J E

where and  denote the unit vectors along 

vector
in ib

i iA B and vector , respectively.  iCB
The latter equation can also be written as                     
                             (30) 1

c x
−

Λ=x J J Λ
Then, by premultiplying Eq.(23) by matrix , it 

becomes                        
qJ

                      (31) 1
q x

−
Λ ℑ= =q J J J Λ J Λ

where matrix 
ℑJ  is then a (9×6) matrix, the 

dimensional homogeneity of which can be verified by 
the MAPLE Software. Note that this forward Jacobian 
matrix can not be defined for the singular configurations 
that can be manifested by  1

x
−J  

The virtual work principle can be stated for Eq.(31) 
as   W 0T T T T δ δ δ δ δℑ= =τ Λ F q τ Λ F J Λ= − −      (32) 

Since the components of vector δΛ  are 
independent, it can be simply written as         
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                                 (33) T
ℑ=τ J F

which is an underdetermined system of linear equations. 

3. Force Transmission Analyses  

Input/output force (or velocity) transmission 
capabilities are important in kinetostatic performances of 
robotic manipulator for design and control. There are two 
input/output force transmission analyses: the forward 
force transmission analysis to determine the magnitude 
bounds of the force vector at three EE points for given 
magnitude of joint actuator forces or torques and the 
inverse force transmission analysis to determine the 
magnitude bounds of joint actuating forces for the given 
magnitude of the Cartesian force. This section presents 
force transmission analyses based on the previously 
derived dimensionally homogeneous Jacobian matrix. 
3.1 Inverse force transmission analysis 
The inverse force transmission analysis can provide a 
basis for sizing links and bearings of a robot manipulator 
and for selecting appropriate force size of actuators. The 
inverse force transmission analysis can be formulated by                                 

        2 T T
ext ext ext= =F F F τ JJ τT            (34) 

where   ⋅  denotes the Euclidean norm of a vector.                       

Eq. (34) shows that the actuator joint forces form an 
hyperellipsoid in the Euclidean space which lies in the 
directions of eigenvectors of the matrix and the joint 
force bounds 

TJJ
τ  for the given Cartesian force extF are 

given by the square roots of the singular values of the 
matrix:   TJJ min maxext extσ σ≤ ≤F τ F         (35) 

where minσ  and maxσ stand for the minimum and the 
maximum singular values of the dimensionally 
homogeneous  matrix. If J extF  is the magnitude of 

the required Cartesian force, the magnitude of actuator’s 
force should be larger than min extσ F . 

Singular values in Eq.(35) can be computed by the 
SVD(singular value decomposition) theorem [13-14]. 

Note that these results are invariant to changes of 
units since the used Jacobian is dimensionally 
homogeneous. 

 
3.2 Forward force transmission analysis 

The forward force transmission analysis provides the 
extreme magnitudes and their directions of the output 
forces for given joint forces. The magnitude bounds of 
input joint forces can be given as  

         2 1T= ≤τ τ τ                 (36) 

Finally, the extreme magnitudes and their directions of 
the output forces for given joint forces can be obtained as  

          2 T T T
ℑ ℑ= =τ τ τ F J J F             (37) 

Eq. (37) shows that the Cartesian forces at three EE 
points on the mobile platform form an hyperellipsoid in 
the Euclidean space which lies in the directions of 
eigenvectors of the T

ℑ ℑJ J  matrix. Then the output force 

bounds for F  with respect to input force τ  are given 

by the square roots of the singular values of the T
ℑ ℑJ J  

matrix:      min maxσ σℑ ℑ≤ ≤τ F τ           (38) 

where minσℑ  and stand for the minimum and the 
maximum singular values of the  matrix. Note that 
since the force ellipsoid is based on the dimensionally 
homogeneous Jacobian, the mapping does not change 
with changes of scale. 

maxσℑ

ℑJ

4. A Numerical Example of       

Actuator Size Selection 

As an application example of the previous 
input/output force transmission analyses, this section 
presents an actuator size selection problem for a simple 
3-RRR planar parallel manipulator that is shown in Fig. 
5 in which the actuated joints are denoted by Ai and the 
passive revolute joints at the mobile platform are denoted 
by Bi. Link lengths are denoted by and  (i = 1, 2, 
3) and radii to the joints A

,1il ,2il

i or Bi from the origin of 
reference frames are denoted by  or , respectively.   
In this case, we can select three EE points T

ar br
j (j = 1, 2, 3) 

as connecting joint points Bi (i = 1, 2, 3) and can derive a 
consistent (3×6) dimensionally homogeneous Jacobian 
matrix of 3-DOF planar parallel manipulator [1].    

Now, we select appropriate size of actuators that 
guarantees force transmission capability of given 
Cartesian forces at any arbitrary configuration in the 
entire workspace. In this example, we consider only the 
constant-orientation workspace shown in Fig. 5. 

l 3,2

l 3,1

l 1,2

l 1,1

l 2,2

l 2,1

r b

r a

constant-orientation
workspace

A1
A2

A3

B1
B2

B3

X

Y

 
Fig. 5 Constant-orientation workspace for 3-RRR 

parallel manipulator. 
The constant-orientation workspace (or translation 
workspace) is defined as the set of locations of the 
mobile platform center that may be reached when its 
orientation is fixed [15-16]. When the unit magnitude of 
Cartesian force is required, the magnitude of actuator’s 
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force should be larger than minσ  in Eq. (35) at every 
point in the translational workspace. Selection of 
actuator size is then to find the maximum minσ  value in 
the entire workspace. In other words,                                    
             minmax{ ( )} extVσ≥τ F⋅          (39) 

where V represents whole translational workspace of a 
manipulator. Fig. 6 shows minσ  values on the entire 
translational workspace. 

-150
-100

-50
0

50
100

150
-150

-100

-50

0

50

100

0.006
0.007

0.008
0.009

0.010
0.011

0.012
0.013

0.014
0.015

Singular Value

Y 

X 

 
Fig. 6 minσ  in whole constant-orientation workspace. 

Fig. 7 shows the configuration of 3-RRR parallel 
manipulator at the maximum value of  that 
occurs at the boundary of the workspace. From this result, 
we could conclude that the size of actuators should be 
larger than  to generate unity magnitude of 
Cartesian force vector (i.e.,

min ( )Vσ

0.017N m⋅
1 ext N=F ). 

 
Fig. 7 The manipulator configuration at  

minmax{ ( )}Vσ

5. Conclusions 

In this paper, we derived the relationship between joint 
forces of parallel manipulator and Cartesian forces at 
three EE points on the mobile platform. This derivation 
is based on the proposed dimensionally homogeneous 
Jacobian matrix[1]. Using this force relationship, we 
presented input/output force transmission analyses: 
forward and inverse force transmission analyses. An 
example of selecting actuator size of 3-RRR planar 
parallel manipulators has been presented when the unit 
magnitude of Cartesian force vector is required. Since 
this force transmission analysis depends on the singular 
values of the Jacobian matrix, the proposed 
dimensionally homogeneous Jacobian can be useful for it. 
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