†.

Characteristics of Flow-Induced Noise around a Sphere

Giwoong Yun and Haecheon Choi

Key Words : Sphere (), Flow-induced noise (

), Acoustic analogy (

)

Abstract

Flow-induced noise propagated from flow over a sphere is numerically investigated for laminar flow at Re = 300 and 425, and for turbulent flow at Re = 3700 and 10^4 , where the Reynolds number is based on the freestream velocity and the sphere diameter. The numerical method used for obtaining the flow over a sphere is based on an immersed boundary method in a cylindrical coordinate system. The Curle's solutions of the Lighthill's acoustic analogy with and without the far-field and compact-source approximation are used in order to investigate the noise field from flow over a sphere. Since the drag and lift forces change irregularly in time at Re = 425, 3700 and 10^4 , the noise propagates in a complicated manner. At Re = 300, 425 and 10^4 , the noise from dipole sources is much larger than that from quadrupole sources. On the other hand, at Re = 3700, the quadrupole source becomes dominant. The temporal variation of the flow-induced noise around a sphere is obtained at some observation points, which shows that the peak frequency corresponds to the Strouhal number associated with the wake instability.

가

425 $Re = u \quad d/v = 300$ (Direct Numerical Simulation, DNS) 10^{4} Re = 3700(Large Eddy Simulation, LES) и d , LES subgrid-scale stress dynamic (8,9). -15 < x/d < 15, 0 < r/d <15, $0 < \theta < 2\pi$ 289 (x) × 161 (r) × 40 (θ) (*Re* = 300), 449 $(x) \times 161 (r) \times 40 (\theta) (Re = 425), 577 (x) \times 141 (r) \times 40$ (θ) (*Re* = 3700, 10⁴) x, r, θ , ,

$$(C_d) \qquad (C_l)$$

$$(x, y, z) 7$$

$$(C_l = \sqrt{C_y^2 + C_z^2}).$$

Lighthill⁽¹⁰⁾ Curle⁽¹¹⁾

Curle⁽¹¹⁾

2.

Lighthill⁽¹⁰⁾

가 (far-field approximation) 가 compact

$$\rho_{FC}'(\overline{X},t) = \frac{M^3}{4\pi} \frac{X_i}{X^2} \frac{\partial}{\partial t} \int_{S} n_j P_{ij}(\overline{Y},t-MX) d^2 \overline{Y} + \frac{M^4}{4\pi} \frac{X_i X_j}{X^3} \frac{\partial^2}{\partial t^2} \int_{V} T_{ij}(\overline{Y},t-MX) d^3 \overline{Y}$$
(1)

$$T_{ij} = \rho u'_{i} u'_{j} + p \delta_{ij} - \frac{1}{M^{2}} \rho \delta_{ij} - \tau_{ij}$$
(2)

$$P_{ij} = p\delta_{ij} - \tau_{ij} \tag{3}$$

$$u_i' = u_i - U_\infty \delta_{1i} \tag{4}$$

(Mach , *M* , honumber), T_{ij} Lighthill , au_{ij} , (·)' , $\overline{X} = (X_1, X_2, X_3)$, $\overline{Y} = (Y_1, Y_2, Y_3)$ $X = \left| \overline{X} \right|, n_j$, V , *S*

Table 1 Flow parameters of flow over a sphere

	Re	\overline{C}_d	St	$\overline{\alpha}_{s}$
Present	300	0.657	0.134	112°
	425	0.587	0.141	107°
	3700	0.355	0.22	90°
	10^{4}	0.393	0.18	90°
Numerical ⁽³⁾	300	0.656	0.137	
Numerical ⁽⁵⁾	300	0.644	0.136	
Experimental ⁽²⁾	3700		0.21	
	10^{4}		0.18	
Numerical ⁽⁵⁾ (LES)	10 ⁴	0.393	0.195	84°-86°
(DES)	10^{4}	0.397	0.2	84°-87°

$$, \qquad 7$$

$$, \qquad \gamma$$

$$,$$

Fa (5)

$$ho_{FC}
ho_{FG}$$
 .

3.

Table 1
$$\overline{C}$$
 St

(wake instability) Strouhal ,
$$\overline{\alpha}_s$$

, DES

7

$$Re = 3700$$

7
 $Re = 10^4$
 r
Fig. 1 $Re = 300, 425, 3700, 10^4$
. (vortex) Jeong &
Hussain⁽¹²⁾ λ_2
 $Re = 300$
 $Re = 300$

3

Fig. 1 Instantaneous vortical structures: (a) Re=300; (b) Re=425; (c) Re=3700; (d) $Re=10^4$.

Fig. 2 Drag and lift coefficients: (*a*) Re=300; (*b*) Re=425; (*c*) Re=3700; (*d*) $Re=10^4$. Here — - —, C_x ; —, C_y ; ------; C_z .

(hair-pin vortex)

(planar symmetry)

$$7^{\dagger}$$
 . $Re = 425$
 7^{\dagger} , $Re = 300$
 7^{\dagger} (asymmetry)
 7^{\dagger} . $Re = 3700$

(shear layer) (shearlayer instability) $x/d \approx 2$ (recirculation region) 7 . , $Re = 10^4$ (vortex ring)

(base pressure)

$$Re = 3700$$

 $7 Re = 10^{4}$
 $7 Re = 3700$
 $7 Re = 300$
 $7 Re = 300$, 425, 3700, 10^{4}
 (C_x)
 (C_y, C_z)

. Fig. 1 7: Re = 3007:

.
$$Re = 425, 3700, 10^4$$

$$Re = 3700$$

 $Re = 300, 425, 10^4$
. Fig. 1
 $Re = 3700$
(cylindrical vortex sheet)

$$Re = 3700$$

$$Re = 300, 425, 10^4$$
 . Re

Fig. 3 Re = 300 425 (dipole) (quadrupole)

$$ho_{FC}$$

- 가 compact 가 (point source)
- .

Fig. 3 Propagation of noise at M=0.1: (a) Re=300 on X_1-X_2 plane ($X_3=0$); (b) Re=425 on X_3-X_2 plane ($X_1=0$). Maximum values are fixed as 5.05×10^{-8} in (a) and 4.58×10^{-8} in (b), respectively.

Fig. 4 Phase diagrams: (a) (C_x, C_y) at Re=300; (b) (C_z, C_y) at Re=425.

Fig. 5 Instantaneous noise propagations on the spherical acoustic field (M=0.1): (a) + X_3 view at Re=3700; (b) + X_2 view at Re=3700; (c) + X_3 view at Re=10⁴; (d) - X_1 view at Re=10⁴. Here solid line denotes the positive values and dashed line denotes the negative values.

,

source)

. Fig. 4
$$X_1$$
- X_2 (*Re*
= 300) X_3 - X_2 (*Re* = 425) C_x , C_y , C_z
. *Re* = 300

(line

 C_x-C_y

(Figs. 3a 4a).
$$(C_y)$$

 (C_x)
 7^{\dagger}
 $Re = 425$
 7^{\dagger}
 $Re = 300$

Fig. 4(b)

$$C_z \quad C_y$$

 $7 \downarrow$ (Fig. 3b).
Fig. 5 $Re = 3700 \quad 10^4$
 ρ_{FC}
 $(X_1=0, X_2=0, X_3=0)$
 $(\sqrt{X_1^2 + X_2^2 + X_3^2} / d = 100)$

(directivity pattern) , $Re = 10^4$ 2- (lobe) 7 (Fig. 5*d*).

$$Re = 3700$$

Re = 3700

Fig. 5(b)4-(lobe)longitudinallateral

Fig. 6 compact 7 (ρ_{FG}) Re =3700 10^4

3

Re = 3700 , Re

 $Re = 10^4$

Table 1

가

(shear-layer

$$= 10^4$$

$$\rho u_x u_r \qquad \rho u_x u_\theta$$

Fig. 7
$$Re = 300 \quad 10^4$$

$$ho_{FG}$$

 $Re = 10^4$ instability) (wake instability)

(near acoustic field)

Fig. 7 Power spectra from time traces of ρ_{FG} at $\sqrt{X_1^2 + X_2^2 + X_3^2} / d = 25$ ($X_1 = X_2, X_3 = 0$): (a) Re = 300; (b) $Re = 10^4$. Here —, total noise; -----, dipole noise; -----, quadrupole noise

4.

 $Re = 300, 425, 3700, 10^4$

compact

가

. $Re = 425, 3700, 10^4$

Re = 3700

.

5700

가

7. Re = 3700 10^4 Curle 가

- (1) Kim, H. J. and Durbin, P. A., 1998, "Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation," *Phys. Fluids*, Vol. 31, pp. 3260-3265.
- (2) Sakamoto, H. and Haniu, H., 1990, "A study on vortex shedding from spheres in a uniform flow," *J. Fluid Eng.*, Vol. 112, pp. 386-392.
- (3) Johnson, T. A. and Patel, V. C., 1999, "Flow past a sphere up to a Reynolds number of 300," *J. Fluid Mech.*, Vol. 378, pp. 19-70.
- (4) Tomboulides, A. G. and Orszag, S. A., 2000, "Numerical investigation of transitional and weak turbulent flow past a sphere," *J. Fluid Mech.*, Vol. 416,

pp. 45-73.

가

- (5) Constantinescu, G. S. and Squires, K. D., 2000, "LES and DES investigations of turbulent flow over a sphere," *AIAA paper*, 2000-0540.
- (6) Yun, G., Kim, D. and Choi, H., 2002, "Large eddy simulation of flow over a sphere at Re = 3700 and 10^4 ," *Proc. IUTAM Symposium on Unsteady Separated Flows*.
- (7) Kim, J., Kim, D. and Choi, H., 2002, "An immersedboundary finite volume method for simulations of flow in complex geometries," *J. Comp. Phys.*, Vol. 171, pp. 132-150.
- (8) Germano, M., Piomelli, U., Moin, P. and Cabot, W. H., 1991, "A dynamic subgrid-scale eddy viscosity model," *Phys. Fluids*, Vol. 3, pp. 1760-1765.
- (9) Lilly, D. K., 1992, "A proposed modification of the Germano subgrid-scale closure method," *Phys. Fluids*, Vol. 4, pp. 633-635.
- (10) Lighthill, M. J., 1952, "On sound generated aerodynamically: I. General theory," *Proc. R. Soc. London, Ser. A: Mathematical and Physical Sciences*, Vol. 211, pp. 564-587.
- (11) Curle, N., 1955, "The influence of solid boundaries upon aerodynamic sound," *Proc. R. Soc. London, Ser. A: Mathematical and Physical Sciences*, Vol. 231, pp. 505-514.
- (12) Jeong, J. and Hussain, F., 1995, "On the identification of a vortex," *J. Fluid Mech.*, Vol. 285, pp. 69-94.