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analyze the performance of the APV method through 
Monte-Carlo simulation and give conclusion in section 6and 7.  

Real systems are often subjected to faults and thus many 
researchers have studied on fault detection problem from 
many viewpoints. Fault may be defined as unexpected system 
change which degrades the system performance. We can 
classify the fault into three parts such as main system, actuator 
and sensor. So studies on fault detection and isolation (FDI) 
for these parts are necessary to improve the reliability of the 
systems. 

 
Nomenclature 

m(t) : n×1 measurement vector 
3)( Rtx ∈ : triad-solution(acceleration or angular rate) 

Th : threshold for fault isolation 
F : the event of a failure (subscript i indicates i th sensor)  To detect faults, parity method is used usually for both 

analytic and hardware redundancy. Inertial navigation systems 
(INS) use three accelerometers and gyroscopes to calculate 
navigation information such as position, velocity and attitude. 
To obtain reliability and to enhance navigation accuracy, INS 
can use redundant sensors. So a lot of studies on FDI for the 
redundant sensors have been performed so far. There are many 
papers for FDI such as SE[2], GLT[4] and OPT[5] for 
hardware redundancy. These methods consist of three 
procedures such as parity equation generation, fault detection 
and isolation. The parity equation is obtained from residual or 
using vectors of null space of measurement matrix. And fault 
detection is performed by comparing the parity value with 
threshold. These methods are adequate for large fault detection 
but not for small fault. The reason is that small threshold 
should be used for small fault detection and thus false alarm 
and wrong isolation probability increases because of effect of 
measurement noise. 

[ ]TnhhH L1= : n×3 measurement matrix with  
rank( H )=3 

ih : 3×1 vector 

)(tf : fault signal(scalar) 

nI : n×n identity matrix 

),( yxN : normal probability density function with mean  
x  and standard deviation  y

),0(~)( nn INt σε : normal distribution of measurement  
noise(white noise) 

)(tp : (n-3)×1 parity vector 
T

FiV ]00100[ LL= : n×1 vector, i th  
element is one only. 
 

In this paper, we propose a new FDI method for redundant 
inertial sensors using average of multiple parity vectors. For 
the proposed FDI method, false  

2. AVERAGED PARITY VECTOR (APV) 
METHOD 

 alarm, miss isolation probability and wrong isolation 
probability are decreased. In this section we propose the averaged parity vector (APV) 

method to detect and isolate faults. We assume that one fault 
occurs at a time. Suppose that i-th sensor has fault with 
magnitude f(t) among n sensors, then we have the following 
sensor measurement equation. 

Also in this paper, we determine optimal threshold based on 
the analysis of navigation performance, not on false alarm and 
propose an optimal sample number through the analysis of the 
FDI performance with respect to sample number. 

)()()()( ttfVtxHtm Fi ε++=                (1) This paper is consisted of as follows. In section 2, averaged 
parity vector(APV) method using multiple parity vectors is 
proposed. In section 3, we analyze characteristics of the APM 
method. In section 4, we analyze navigation performance with 
respect to fault size and determine optimal threshold. In 
section 5, we determine optimal sample number. Lastly, we  

Multiplying V on the left-hand side satisfying 0=VH and 

, we obtain the parity vector nnRV ×−∈ )3(

)()()()( tVtfvtVmtp i ε+==                    (2) 

where [ ]nvvV L1=  and VV . iFi v=
 

Parity vector  has probabilistic characteristics such as  )(tp† This work was supported by Automatic Control Research
Center and Agency for Defense Development. 
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Parity vector  depends on noise as well as fault. If 
we want to detect small fault and thus decrease threshold, then 

)(tp

)}()()({

)}()()({

212

212

k

j

T
j

k

j

i
T

j

ttt
vk

Vv

tftftf
vk

vv

εεε ++++

+++=

L

L

 
the fault detection probability gets lower and the correct 
isolation probability also decreases. 

The FDI problem can be stated as follows: 
 
Problem Definition 
Consider a measurement equation for redundant sensors 

including fault as (1). Find a FDI method which has as much 
correct isolation probability as users want and has short 
detection time even though the fault is small. 

Vector  has the probabilistic characteristics as 

follows 

)(ˆ
kj tf
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kj tf ~ ))},()()({( 212
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vk
tftftf

vk

vv
N σ

+++ L  (7) 
 
To obtain the performance described above, we use 

multiple measurements. 
Suppose that we use q samples of measurements at 

,…, , then the j-th sensor component of averaged 

parity vector can be described as 
1+kt qkt +

The parameters stated above are defined as follows. 
Case 1: When there is no fault ( ) 0)( =tf

False alarm ( )( ktα ): ))(ˆ()(
0

ThtfPt kiHk >=α  
))()()(()(ˆ

212 qkkk

j

T
j

qkj tptptp
vq

v
tf ++++ +++= L ,(j=1,…,n)(4) 

Case 2: When a fault occurs ( ) 0)( ≠tf
We assume that a fault occurs at i-th sensor. which is the projection of averaged parity vector onto 

vector , i-th column vector of matrix . iv V Miss isolation probability( )( ktβ ):  

))(ˆ()(
1

ThtfPt kiHk ≤=β  Eq.(4) can be converted to the recursive form as follows. 
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, (j=1,…,n)(5) Correct isolation probability(1 )( ktβ− ):  

))(ˆ()(1
1

ThtfPt kiHk >=− β  The fault detection and isolation method we propose is 
described as follows. Wrong isolation probability( )( ktγ ): 

 
)and,)(ˆmaxargand)(ˆ()(

1
irtfrThtfPt kj

j
krHk ≠=>=γ

DDetection time( t ): Refer to definition 1 in section 5. 

APV Algorithm 
(1) Compute parity vectors  at 

 

)(,),(),( 1 qkkk tptptp ++ L

qkkk tttt ++= ,,, 1 L
0H  denotes no-fault hypothesis and  fault 

occurrence hypothesis. 
1H

where , , , . Vmp = 0=VH IVV T = nnRV ×−∈ )3(

Let’s discuss some characteristics of APV method. (2) Compute n test functions according to each sensor. 
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, (j=1,…,n) Convergence 
Suppose the sensor measurement has constant fault 

btf =)( and we use sample from t  to , then 1 kt
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sense of mean square convergence. However, we can not use 
infinity number of measurements because of detection time. 
So we need to determine optimal number of samples. 

(3) Find the sensor index for which the test function has 
maximum absolute value among n values. 

)(ˆmaxarg qkj
j

tfr +=  , (j=1,…,n) 

(4) Compare the maximum value of the test function found in 

step (3) with the threshold Th . If | , then 

fault occurs at r-th sensor. Otherwise, set  and go 

to procedure 1. 

Thtf qkr >+ |)(ˆ

1++= qktt

 
3. CHARACTERISTICS OF THE AVERAGED 

PARITY VECTOR METHOD 
 

False Alarm 
 

If there is no fault, then probability distribution of  

is as follows. 

)(ˆ
kj tfIn this section we consider some characteristics of APV 

method such as false alarm, correct isolation probability (or 
miss isolation probability), wrong isolation probability, and 
detection time. )(ˆ

kj tf ~ ),0(
jvk

N σ
                      (8) 

Let  be the projection of averaged parity vector 

onto vector  described as 

)(ˆ
kj tf

jv So the probability of false alarm )( ktα  at ktt =  can be 
calculated as follows. 
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We are supposed to analyze the estimation performance of 
(11) when a fault  occurs, and determine the threshold 

in this section. Suppose that fault  occurs at i-th sensor 
and consider two cases described below and analyze the 
performance of the two, one including the faulty sensor and 
the other excluding it. 

)(tf
)(tf

From (9), we know that as the sample number k increases 

 has less effect from the noise and thus the variance 

of decreases, which means that the probability of 

false alarm of multiple parity vector method is less than that of 
single parity vector method for the same threshold. 

)(ˆ
kj tf

(ˆ
j tf )k Case 1: Calculate the navigation performance using n 

sensors including the faulty one 
Case 2: Calculate the navigation performance using n-1 

sensors except the faulty one  
 Miss Isolation Probability or Correct Isolation Probability 

4.1 The case including the i-th faulty sensor Suppose the sensor measurement has constant fault 

, then from the above stated 

convergence characteristic. If 

btf =)( btf kik
=

∞→
)(ˆlim

Thb > , then Thtf ki >)(ˆ  

as  and thus ∞→k 0)( =ktβ . 

Suppose that ,  and )(tx )(tf )(tε  have no correlation 

and denote  be the least square estimator including 

i-th faulty sensor in (1). Then  can be described as 
follows. 

)(tx̂ i+

)(ti+x̂
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Wrong Isolation Probability 
Suppose that nvvv === L21 , then  the inequality 

12 <
j

i
T
j

v

vv
 holds for   and thus the following 

inequality holds from (7):  

ij ≠

The error covariance  of the estimator can 
be obtained as (13) 
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Since , error covariance C  can be 
described as follows. 

iFi
T hVH = )(ti+])(ˆ[])(ˆ[ kjki tfEtfE ≥ ,                  (10) j∀

12112 )()()()()( −−−
+ += HHHHhhHHtftC TTT

ii
T

i σ  (14) We can not compare the magnitudes of )(ˆ
ki tf  and 

)(ˆ
kj tf  directly because of measurement noise. However 

according to (7) the effect of noise becomes less and )(ˆ
ki tf  

may be biggest among n values of )(ˆ
kj tf . 

 
4-2. The case excluding the i-th faulty sensor  

Define  be the least square estimator of x using n-1 

normal sensors with the faulty sensor excluded, then  can 
be described as (15) 
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         (15) So, if the sample number is large enough, then the wrong 

isolation probability decreases much. 
where  is a n×n diagonal matrix with  

component 0 and the other components 1. 
iW ),( ii 

Detecinon Time 
Detection time is defined in Definition 1 in section 5. 

Detection time is not a parameter in single parity vector 
method since the method uses only current measurement. 
However, detection time is necessary in averaged parity vector 

method since  depends on the number of 
measurements which contain fault signal among k samples. As 
k increases, detection time increases also. Thus we need to 
choose the optimal sample number for APV algorithm. 
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In this case the error covariance  of  can be 
given as (16) 
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The following theorem shows how to obtain the optimal 
threshold. 

 
 Theorem 1. For the two error covariances (14) and (16), the 

following two statements are equivalent. 4. THRESHOLD DETERMINATION 
 

ⅰ) 
iv

tf σ
≤)(  In this section we propose the optimal threshold for fault 

isolation of inertial sensor systems based on navigation 
performance. It is well known that the more redundant sensors 
we use the less the estimation error covariance of triad 
solution( ) becomes. If there is a faulty sensor, the 
estimation error covariance will be increased. We can 
determine optimal threshold using the above properties. 

)(tx

ⅱ) 0)()( ≤− −+ tCtC ii  

where σ  and iν are standard deviation of sensor noise 
and i-th column of V matrix. 

And  
iv

tf σ
=)(  ⇔ . )()( tCtC ii −+ =

From (1) we can obtain least square estimator  for 

 as (11). 

)(ˆ tx
)(tx proof) 

Notice that . Then the 
following equality holds using matrix-inversion formula. 

T
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Consider the (n-3)×n matrix satisfying (17) (see [4] for 
algorithm) 

V

0=VH ,                          (17) 3−= n
T IVV

For matrices H and  satisfying (17), 

equality  holds and thus 

V
THTT HHIVV 1)−−= H (

21) i
T hH =−(1 i Hh− iv [4]. 

So (14) can be written as (18). 
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The difference of the two covariances (14) and (16)can be 
calculated as follows. 
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Since  we can obtain the 

equivalence of two statements. 

0)()( 11 ≥−− HHhhHH TT
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T
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2

2
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iv

σ)( 2tf .  

Also  
iv

tf σ
=)(  ⇔  can be 

obtained easily from (19)g 

)()( tCtC ii −+ =

Theorem 1 means that if the magnitude of the fault )(tf  

is less than or equal to 
iv
σ

, it is better to include the faulty 

sensor since the error covariance is less than or equal 

to . So we can decompose faults into two categories 
as follows: 

)(tC i+

)(tC i−

If 
iv

tf σ
<)( , then  can be said as a tolerable fault. )(tf

If 
iv

tf σ
≥)( , then  can be said as a non-tolerable 

fault. 

)(tf

Remark 1. According to Theorem 1 we can say that tolerable 
faults are better not to be isolated and non-tolerable faults 

should be isolated. So 
iv
σ

 can be used as the threshold for 

isolation of faulty sensors. We choose 
iv

Th σ
=  be the 

optimal threshold for FDI in this paper. 
 
5. OPTIMAL NUMBER OF MEASUREMENTS 
 
In this paper we use the average of multiple parity vector. 

The more samples q we use, the less the false alarm and wrong 
isolation probability, and the longer the detection time. 

Thus there should be some trade-off for determining sample 
number q considering performance parameters. 

To make the analysis simple suppose that the magnitude of 

fault btf =)(

qk+

 and the fault of i-th sensor does not occur at 
the first q sampling period. Let  be the number of samples 
which include fault signal  among q parity vectors at 

 . 

l
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tt =

In this case the value of  will be given as (20). )(ˆ
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)}()()({ 212 lkkk
i

T
i ttt
vq

Vv
b

q
l

+++ ++++= εεε L  

Figure 1 shows the probability density function of  

and  when fault  occurs from (

)(ˆ
ki tf

1)(ˆ
lki tf + btf =)( +k )-th 

sample. Dotted line shows the density function of no-fault 
case and solid line shows the density function in case of  
faults among q measurements: 

l
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Fig.1 Probability density function of   and  )(ˆ

ki tf )(ˆ
lki tf +

 

Since for the area where the value is less than the 
threshold  the sensor is not isolated, define this area as 
miss isolation probability(

)(ˆ
lki tf +

Th
β ). Then correct isolation 

probability becomes β−1  and the following equality holds. 
cσ Th

vqq
lb

i

=−  

cwhere  is to be determined from miss isolation 
probability ( β ).  

 
Definition 1: Suppose fault signal enters from 1+= ktt  

and miss isolation probability( β ) is given. When correct 

isolation probability is greater than β−1  at lktt += , 

define this time as detection time( ). Then detection time 
can be described as follows 

Dt

sD tlt =  ( ql ≤≤1 ) 

where  is the sampling interval.g st
A FDI method which has good performance is the method 

which has as much correct isolation probability as users want 



 
z  

and has short detection time. We can obtain performance 
index which satisfies these requirements as (22). 

 

Optimization Problem 

Minimize 
1)(

)()1)(1(),,( 2

22

+−

−+−−
=

lq
ThbslsqblJ  (22) 

subject to Th
vq

c
q
lbqblg

i

−−=
σ),,( . 

The minimization problem is to find appropriate values 
among available , , and  satisfying the miss isolation 
probability 

l b q
β  such that for the fault as near as the threshold, 

detection time is short (i.e., ) and the sample number is 
large. In (22), 

1≈l
s ( ) is the parameter that designers 

are supposed to determine. The closer 
1<0 < s

s  gets to 0, it means 
that we want to make detection time short, and the closer s  
gets to 1, it means that we want to make the detectable fault 
smaller. 

Fig. 2  and  w.r.t fault magnitude )( iCtrace + )( iCtrace −
 
Figure 2 is the simulation result of Theorem 1 showing 

and  where x-axis denotes fault size 
to noise ratio and y-axis denotes the magnitudes of  

and . When fault signal  is 

greater than 

)( iCtrace +

)( iCtrace +

)( iCtrace −

)( iCtrace − )(tf

σ2
)( iCtrace −

, the inequality  
>  holds, which shows the 

consistency with theorem 1. 
)( iCtrace +

We can use Lagrangian method to solve the minimization 
problem. However, it is hard to obtain an explicit solution. 

For simplicity, let l (i.e., ), then the 
performance index and constraint in (22) can be described as 
in (23) and (24). 

q= sD qtt =

 

22 )()1()1(),( ThbsqsqbJ −+−−=            (23) 

Th
qv

cbqbg
i

−−=
σ),(                      (24) 

For (23),(24), we can obtain the following third order 
equation with respect to  by using   Lagrange’s multiplier 
method. 

q

0)1(2)1(2 222232 =−−−− σscqvsqvs ii    (25) 

Solving (25), we obtain the solution and of the 
minimization problem . 

b q

 
6. SIMULATIONS 

(a ) Optimal sample number  

 

In this section we perform Monte Carlo simulations to 
analyze the performance of the proposed FDI method. We use 
6 identical sensors with dodecahedron configuration which is 
known as optimal[1,3]. We assume that the fault is bias and 
the measurement noise is white Gaussian with mean 0 and 
variance 1=σ . 

In this case, measurement matrix H and satisfying 

and can be obtained as follows:  

V
0=VH IVV T =

T

H















=

−
−

−

5257.05257.0008507.08507.0
8507.08507.05257.05257.000
008507.08507.05257.05257.0

















−
−

−
=

3717.03717.06015.06015.000
003717.03717.06015.06015.0

6015.06015.0003717.03717.0
V

where 2/1621 ==== vvv L . 

(b) Normalized difference of fault and threshold 
Fig.3 Relations between Optimal Sample Number, Difference 

of Fault and Threshold and Scale Factor ranged over 0.999 
 
Figure 3 shows optimal sample number and normalized 

difference of fault size and threshold with respect to scale 
factor s  for various wrong isolation probability. For 
example, let’s look at p1 and p2 in Fig. 3, which means that 
when scale factor s=0.9996 and wrong isolation probability 
we want is 0.04, the optimal sample number is 20 and we can 
isolate the fault with magnitude σ57.0+= Thb . Figure 3 
shows that when scale factor s in performance index is more 

The threshold stated in Theorem 1 is σ2=Th  for the 
matrix V obtained above. 

 



 
z  

than or equal to 0.999, increases very fast. q

57.0

 
 (a) correct isolation probability 

(a) Correct isolation probability 

  (b) wrong isolation probability (b) Normalized difference of fault and threshold Fig.7 Performance of Averaged Parity Method Fig.5 Relations between correct isolation probability, 
difference of fault and threshold and sample number for scale 

factor ranged over 0.99. 

 
7. CONCLUSIONS 

  
We consider a FDI problem for INS redundant inertial 

sensors and propose a FDI method using averaged parity 
vectors (APV). We also propose an optimal threshold based 
on navigation performance, not on false alarm, and propose an 
optimal sample number.  

Figure 5 shows correct isolation probability and normalized 
difference of fault size and threshold with respect to optimal 
sample number for various scale factor . For example, let’s 
look at p1 and p2 in Fig. 5, which means that with scale factor 
s=0.99999 when we use 90 sample for fault signal of 
magnitude 

s

σ+= Thb , correct isolation probability 
becomes 0.993. Figure 5 shows that to obtain high correct 
isolation probability we need with a few samples for large 
fault, but we need many samples for small fault. 

By using multiple parity vectors we can reduce false alarm 
and wrong isolation probability, and improve correct isolation 
probability. Optimal sample number can be determined to 
obtain as much correct isolation probability as we want and 
obtain short detection time for small fault just larger than 
threshold. Figure 7 shows correct isolation probability and wrong 

isolation probability with respect to sample number as a result 
of 10,000 Monte Carlo simulation. We assume that fault enters 

from 101-th sample on and =90, q σ2=Th . Figure 7-(a) 
shows that although fault starts at 101-th sample, correct 
isolation probability increases from 150-th sample and 
becomes 0.995 at 190-th sample, i.e., detection time is 

. This result is consistent with the result of p1 and 
p2 points in Fig.5. 

sD tt 90=
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