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Abstract: We consider fault detection and isolation (FDI) problem for inertial navigation systems (INS) which use redundant
inertial sensors and propose an FDI method using average of multiple parity vectors which reduce false alarm and wrong isolation,
and improve correct isolation. We suggest optimal isolation threshold based on navigation performance, and suggest optimal
sample number to obtain short detection time and to enhance detectability of faults little larger than threshold.

Keywords: fault detection and isolation, inertial sensors, parity equation, optimal threshold

1. INTRODUCTION

Real systems are often subjected to faults and thus many
researchers have studied on fault detection problem from
many viewpoints. Fault may be defined as unexpected system
change which degrades the system performance. We can
classify the fault into three parts such as main system, actuator
and sensor. So studies on fault detection and isolation (FDI)
for these parts are necessary to improve the reliability of the
systems.

To detect faults, parity method is used usually for both
analytic and hardware redundancy. Inertial navigation systems
(INS) use three accelerometers and gyroscopes to calculate
navigation information such as position, velocity and attitude.
To obtain reliability and to enhance navigation accuracy, INS
can use redundant sensors. So a lot of studies on FDI for the
redundant sensors have been performed so far. There are many
papers for FDI such as SE[2], GLT[4] and OPT[5] for
hardware redundancy. These methods consist of three
procedures such as parity equation generation, fault detection
and isolation. The parity equation is obtained from residua or
using vectors of null space of measurement matrix. And fault
detection is performed by comparing the parity value with
threshold. These methods are adequate for large fault detection
but not for smal fault. The reason is that small threshold
should be used for small fault detection and thus false alarm
and wrong isolation probability increases because of effect of
measurement noise.

In this paper, we propose a new FDI method for redundant
inertial sensors using average of multiple parity vectors. For
the proposed FDI method, false

alarm, miss isolation probability and wrong isolation
probability are decreased.

Also in this paper, we determine optimal threshold based on
the analysis of navigation performance, not on false alarm and
propose an optimal sample number through the analysis of the
FDI performance with respect to sample number.

This paper is consisted of as follows. In section 2, averaged
parity vector(APV) method using multiple parity vectors is
proposed. In section 3, we analyze characteristics of the APM
method. In section 4, we analyze navigation performance with
respect to fault size and determine optima threshold. In
section 5, we determine optimal sample number. Lastly, we
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analyze the performance of the APV method through
Monte-Carlo simulation and give conclusion in section 6and 7.

Nomenclature

m(t) : nx1 measurement vector

X(t) e R®: triad-solution(acceleration or angular rate)
Th : threshold for fault isolation

F : the event of afailure (subscript i indicatesi th sensor)
rank(H )=3
h; : 3x1 vector
f (t) : fault signal(scaar)
I, nxn identity matrix

h, " : nx3 measurement matrix with

N(X, ¥) : normal probability density function with mean
X and standard deviation 'y

£(t) ~N(0,,,0l ;) : normal distribution of measurement
noise(white noise)

p(t) : (n-3)x1 parity vector
Vg =[0 010
element isone only.

0]T : nx1 vector, i th

2. AVERAGED PARITY VECTOR (APV)
METHOD

In this section we propose the averaged parity vector (APV)
method to detect and isolate faults. We assume that one fault
occurs at a time. Suppose that i-th sensor has fault with
magnitude f(t) among n sensors, then we have the following
sensor measurement equation.

m(t)=H x(t) + Vg () + &t) @)
Multiplying V on the left-hand side satisfying VH = Oand
V e R™3" we obtain the parity vector

p(t) =Vm(t) =, f (t) +Va(t) )

where V :[vl vn] and W, =V,.
Parity vector p(t) has probabilistic characteristics such as
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Elp®]=v; f () ,

E[(p(t)-v; f ) (p®) -V f (1)) ]=c?WT ®)
Parity vector p(t) depends on noise as well as fault. If

we want to detect small fault and thus decrease threshold, then
the fault detection probability gets lower and the correct
isolation probability also decreases.

The FDI problem can be stated as follows:

Problem Definition

Consider a measurement equation for redundant sensors
including fault as (1). Find a FDI method which has as much
correct isolation probability as users want and has short
detection time even though the fault is small.

To obtain the performance described above, we use
multiple measurements.
Suppose that we use q samples of measurements at

i Tiiqo then the j-th sensor component of averaged
parity vector can be described as

| (tesq) = H H (Pt + Pltz) + -+ Pllyeq)) ‘UL M)
j

which is the projection of averaged parity vector onto
vector V; , i-th column vector of matrix V .

Eq.(4) can be converted to the recursive form as follows.
T

f} (trq) = T (tiegs) + 5 (Pltisq) = P(t)) » (=1--m)(E)
quJ ]
The fault detection and isolation method we propose is
described as follows.

APV Algorithm

(1) Compute parity vectors P(ty), P(tyiq), s P(ty.q) @

t=1,t1, kg

where p=Vm, VH =0, WT =1, VeRMIN

(2) Compute n test functions according to each sensor.
T

Fi (terg) = T esga) +——5 (Pltieq) = P(ty)) » G710
q\vJH
(3) Find the sensor index for which the test function has
maximum absol ute value among n values.

r= argmax‘fj(tk+q)‘ ,(=1,...,n)
j
(4) Compare the maximum value of the test function found in
step (3) with the threshold Th. If | f, (t,,q) [>Th, then

fault occurs at r-th sensor. Otherwise, set t=t,_ ., and go
to procedure 1.

3. CHARACTERISTICSOF THE AVERAGED
PARITY VECTOR METHOD

In this section we consider some characteristics of APV
method such as false alarm, correct isolation probability (or
miss isolation probability), wrong isolation probability, and
detection time.

Let fAJ- (t,) be the projection of averaged parity vector

onto vector V; described as

J(k>-k 7 (p(t) + P(t;) +-+ P(t) » (=L (6)

T

IIVJ ||
IIVJ i

Vector f j (ty) hes the probabilistic characteristics as
follows

i () ~ N

{f(t1)+ f(ty) +---+ f(t)}

{8(t1) +e(ty) +-- +a(t)}

) ()

{f(t)+f(t)+ -+ f(t)},
o ]

The parameters stated above are defined as follows.
Case 1. Whenthereisno fault ( f (t) =0)

Faseaam (a(t,)): a(t) =Py, (f, (tk)‘>Th)

Case 2: When afault occurs (  (t) # 0)
We assume that a fault occurs at i-th sensor.
Miss isolation probability( £ (ty)):

Al = Py (i 00 <TH)

Correct isolation probability(1— £(t, ) ):
1- lt) = Py (i )| > )

Wrong isolation probability( 7 (t, ) ):

7(te) = P (

fr(tk)‘>Th andr =argmax‘fj (t ), and r =1i)
i

Detection time(t ): Refer to definition 1 in section 5.

Hy denotes no-fault hypothesis and H; fault

occurrence hypothesis.
Let’s discuss some characteristics of APV method.

Convergence

Suppose the sensor measurement has constant fault
f(t)=b and we use sample from tl to t, , then

Iy, (k)_ bl=0

||VJ|| ||v, ||

which means that f j (t) converges to

I|m E[(f J(tk)

v; v
> b in the

vl

sense of mean square convergence. However, we can not use
infinity number of measurements because of detection time.
So we need to determine optimal number of samples.
False Alarm

If there is no fault, then probability distribution of  f; (t )
isasfollows.

fi i (t) ~ \/—" J" (8)

So the probability of falsealarm «(t,) at t=t, canbe
calculated as follows.
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2Jk|v, . .
a(ty) =%ﬁ;exp[— |<||vj||2 f, (tk)2/2c72]dfj t) O

From (9), we know that as the sample number k increases
f;(tc) has less effect from the noise and thus the variance

of fj (t) decreases, which means that the probability of
false alarm of multiple parity vector method isless than that of
single parity vector method for the same threshold.
Miss I solation Probability or Correct |solation Probability
Suppose the sensor measurement has constant fault
f(t)=b , then I!im fi (t,)=b from the above stated
—o©

convergence characteristic. If |b| >Th, then ‘f, (tk)‘ >Th

as k— o andthus S(t,)=0.

Wrong | solation Probability
Suppose that "Vl" = ||v2|| == ||vn || , then theinequality

ki
I
]—2<1 holds for  j#i and thus the following
v
inequality holds from (7):
El|fi (6 > Y f o), v | (10
We can not compare the magnitudes of ‘fl (tk)‘ and
‘l:j (tk)‘ directly because of measurement noise. However

according to (7) the effect of noise becomes less and ‘ ﬂ (ty )‘

may be biggest among n values of ‘fj (tk)‘ .

So, if the sample number is large enough, then the wrong
isolation probability decreases much.

Detecinon Time

Detection time is defined in Definition 1 in section 5.
Detection time is not a parameter in single parity vector
method since the method uses only current measurement.
However, detection time is necessary in averaged parity vector

method since l:i (ty) depends on the number of

measurements which contain fault signal among k samples. As
k increases, detection time increases also. Thus we need to
choose the optimal sample number for APV algorithm.

4, THRESHOLD DETERMINATION

In this section we propose the optimal threshold for fault
isolation of inertial sensor systems based on navigation
performance. It is well known that the more redundant sensors
we use the less the estimation error covariance of triad

solution( X(t) ) becomes. If there is a faulty sensor, the

estimation error covariance will be increased. We can
determine optimal threshold using the above properties.

From (1) we can obtain least square estimator X(t) for
X(t) as(11).
X(t)=(H"H)H m(t) (12

We are supposed to analyze the estimation performance of
(11) when afault f(t) occurs, and determine the threshold
in this section. Suppose that fault f(t) occurs at i-th sensor

and consider two cases described below and analyze the
performance of the two, one including the faulty sensor and
the other excluding it.

Case 1: Calculate the navigation performance using n
sensors including the faulty one

Case 2: Calculate the navigation performance using n-1
sensors except the faulty one

4.1 The caseincluding thei-th faulty sensor
Suppose that X(t), f(t) and &(t) have no correlation

and denote X,;(t) be the least square estimator including
i-th faulty sensor in (1). Then X,;(t) can be described as
follows.

%i(®)=(HTH)TH m()

=X(t) + (HTH) ' HT (Ve £ (1) + £(1))

The error covariance C,; (t) of the estimator X,; (t) can
be obtained as (13)
C..i (t) = E[(%,; (1) = x(O) (%, (1) = x(1)) '] (13)

= fO2H H) " H VeV T HHTH) T+ o?(HTH)

(12)

since H'Vg =h , eror covariance C,;(t) can be
described as follows.
C,)=f®*H"H)hh"(HTH) +c2(HTH)™ (19)

4-2. The case excluding the i-th faulty sensor

Define X_; be the least square estimator of x using n-1
normal sensors with the faulty sensor excluded, then )A(,i can
be described as (15)

% (1) = (HTWH) " H 'Wim(t)

=x(t)+(HTWH)H W &(t)

where W, is a nxn diagona matrix with (i,i)
component 0 and the other components 1.

In this case the error covariance C_;(t) of X can be
given as (16)

Ci (t) = EI(R (1) - x@®) (% () - x@®) ]

— 2 (H TWi H )71

The following theorem shows how to obtain the optimal

threshold.

(15

(16)

Theorem 1. For the two error covariances (14) and (16), the
following two statements are equivalent.

EHO B
i
) Ci(-C,()<0
where o and v;are standard deviation of sensor noise
and i-th column of V matrix.

And | (1) = ||Vi|||
pr oof)

Notice that H'WH=HTH-hh' . Then the
following equality holds using matrix-inversion formula

C.i()=C,() .
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(H™WH)™ =(HTH —hh")™
= (HTH) ™ +(HTH) " h @-h (HTH)h) T (HTH) ™
Consider the (n-3)xn matrix V satisfying (17) (see [4] for
algorithm)
VH=0, W' =1, (17)
For matrices H ad V satisfying  (17),
equadity VIV =1-HMHTH)™H" holds and thus

1-h(HTH)™h =|v, "2 [4].
So (14) can be written as (18).

2
+ 2 (HTH)*hRT (HTH) " (18)
i
The difference of the two covariances (14) and (16)can be
calculated as follows.

C.()-Ci)=(f®)*-

C.t)=c?(H"H)*

2
O _ _
—)(HTH) KK (HTH)™ (19
i
Since (HTH)’lhi hiT(HTH)’lZO we can obtain the
equivalence of two statements. C,;(t)-C,(t)<0
o2

ol

Also |f(t)|=M - C,i(t)=C,(t) can be

f)?-

obtained easily from (19)H
Theorem 1 means that if the magnitude of the fault |f (t)|

o
[

sensor since the error covariance C; (t) is less than or equal

is less than or equa to it is better to include the faulty

to C_;(t) . So we can decompose faults into two categories
asfollows:

It | ()< " I then f(t) canbesaid asatolerable fauilt.

It | () zﬁ, then f(t) can be said as a non-tolerable
i

fault.
Remark 1. According to Theorem 1 we can say that tolerable
faults are better not to be isolated and non-tolerable faults

should be isolated. So can be used as the threshold for

||V ||

isolation of faulty sensors. We choose Th:ﬁ be the
i

optimal threshold for FDI in this paper.
5. OPTIMAL NUMBER OF MEASUREMENTS

In this paper we use the average of multiple parity vector.
The more samples g we use, the less the false alarm and wrong
isolation probability, and the longer the detection time.

Thus there should be some trade-off for determining sample
number q considering performance parameters.

To make the analysis simple suppose that the magnitude of

fault f(t)=b and the fault of i-th sensor does not occur at
the first g sampling period. Let | be the number of samples
which include fault signal f(t) among g parity vectors at

t:tk+q .

Inthiscasethevalue of f; (t,,,) will begiven as (20).

fi(ten) = fi Cnre) + ——Vi" (Pltyar) = P(t)) (20)
v |
.
Lo Y o) + ) o+ el )
4 dv

Figure 1 shows the probability density function of ﬂ (ty)

and fi (ty. ) whenfault f(t)=b occursfrom (k+1)-th

sample. Dotted line shows the density function of no-fault
case and solid line shows the density function in case of |
faults among g measurements:

fi(t)~NO, ——) i (t) -
- ﬁllvill “
T.h
p.g.f. of fA. (te.r)

) @Y
fllll

p.d.f{of f (t,)

i
f(t) =

g yalu
Fig.1 Probability density functionof  f, (t,) and i (t.,)

Since for the area where the value ﬂ (tx. ) isless than the

threshold Th the sensor is not isolated, define this area as
miss isolation probability( £ ). Then correct isolation

probability becomes 1— £ and the following equality holds.
b co

a Jawl

where C is to be determined from miss isolation
probability ( £).

Definition 1: Suppose fault signal enters from t=t,
and miss isolation probability( £ ) is given. When correct
isolation probability is greater than 1-4 a t=t,,, ,
define this time as detection time(ty ). Then detection time
can be described as follows

tp =1ty (1<1<q)

where tg isthe sampling interval.l

A FDI method which has good performance is the method
which has as much correct isolation probability as users want
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and has short detection time. We can obtain performance
index which satisfies these requirements as (22).
Optimization Problem

1-9)(1 -1)2 + s(b—Th)?
(q-1)2+1
I_b_ co

Vel

The minimization problem is to find appropriate values
among available |, b, and q satisfying the miss isolation
probability £ such that for the fault as near as the threshold,

detection time is short (i.e., | 1) and the sample number is
large. In (22), s(0<s<1) is the parameter that designers
are supposed to determine. The closer < getsto 0, it means
that we want to make detection time short, and the closer s
gets to 1, it means that we want to make the detectable fault
smaller.

We can use Lagrangian method to solve the minimization
problem. However, it is hard to obtain an explicit solution.

For simplicity, let 1=q (i.e, tp =0t ), then the
performance index and constraint in (22) can be described as
in (23) and (24).

J(b,g)=1-9) (q-1)? + s(b—Th)? (23)
g(b,g)=b-

Minimize J(I,b,q) = (22)

subject tog(l,b,q) =

Co

vi[Va
For (23),(24), we can obtain the following third order
equation with respectto q by using  Lagrange’s multiplier
method.
21-9)|v, ||2q3 -21-9)|v ||2q2 —sc?62=0 (25
Solving (25), we obtain the solution b and q of the
minimization problem .

(24)

6. SSIMULATIONS

In this section we perform Monte Carlo simulations to
analyze the performance of the proposed FDI method. We use
6 identical sensors with dodecahedron configuration which is
known as optimal[1,3]. We assume that the fault is bias and
the measurement noise is white Gaussian with mean 0 and
variance o =1

In this case, measurement matrix H and V satisfying
VH =0and W' =1 can be obtained as follows:

0.5257 -0.5257 0.8507 0.8507 0 0
H=| 0 0 0.5257 -0.5257 0.8507 0.8507
0.8507  0.8507 0 0 0.5257 -0.5257 |
03717 0.3717 0 0 -0.6015 0.6015]
V ={-0.6015 0.6015 03717 0.3717 0 0
0 0 -0.6015 0.6015 0.3717 0.3717
where: v =[va == V[ =1/42..

The threshold stated in Theorem 1 is Th= ﬁa for the
matrix V obtained above.

¥ B, 4 Ls n in 12
Pl pon o noos rabo) M|

Fig. 2 trace(C,;) and trace(C_;) w.r.tfault magnitude

Figure 2 is the simulation result of Theorem 1 showing
trace(C,;) and trace(C_;) where x-axis denotes fault size
to noise ratio and y-axis denotes the magnitudes of
trace(C,;) and trace(C_;) . When fault signa f(t) is

greater than ﬁo- , the inequality
trace(C,;) > trace(C_;) holds, which shows the
consistency with theorem 1.

i

(a) Optimal sample number

T

[ e s s i 1 D00

(b) Normalized difference of fault and threshold
Fig.3 Relations between Optimal Sample Number, Difference
of Fault and Threshold and Scale Factor ranged over 0.999

Figure 3 shows optimal sample number and normalized
difference of fault size and threshold with respect to scae
factor s for various wrong isolation probability. For
example, let’s look at pl and p2 in Fig. 3, which means that
when scale factor s=0.9996 and wrong isolation probability
we want is 0.04, the optimal sample number is 20 and we can
isolate the fault with magnitude b =Th+ 0.57c . Figure 3
shows that when scale factor Sin performance index is more
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than or equal t0 0.999, (increases very fast.
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(a) Correct isolation probability
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(b) Normalized difference of fault and threshold '
Fig.5 Relations between correct isolation probability,
difference of fault and threshold and sample number for scale
factor ranged over 0.99.

Figure 5 shows correct isolation probability and normalized
difference of fault size and threshold with respect to optimal
sample number for various scale factor S. For example, let's
look at pl and p2 in Fig. 5, which means that with scale factor
$=0.99999 when we use 90 sample for fault signal of
magnitude b=Th+0.570 , correct isolation probability
becomes 0.993. Figure 5 shows that to obtain high correct
isolation probability we need with a few samples for large
fault, but we need many samples for small fault.

Figure 7 shows correct isolation probability and wrong
isolation probability with respect to sample number as a result
of 10,000 Monte Carlo simulation. We assume that fault enters

from 101-th sampleon and =90, Th= \/EO' . Figure 7-(8)

shows that although fault starts at 101-th sample, correct
isolation probability increases from 150-th sample and
becomes 0.995 at 190-th sample, i.e., detection time is

tp =90t . This result is consistent with the result of p1 and
p2 pointsin Fig.5.

In Fig. 7-(b) wrong isolation exists for the first 10 samples
despite of no faults. This happens because it is the beginning
of the simulation and thus measurement noise has great effect.
However, wrong isolation probability becomes around O after
10 samples and continues to be around O even after 101-th
sample where the fault started.

This simulation shows that even for small fault, the
proposed APVM has great performance on fault isolation in
the cost of detection time.

e

(a) correct isolation probability

E A - FL
2R N
(b) wrong isolation probability
Fig.7 Performance of Averaged Parity Method

7. CONCLUSIONS

We consider a FDI problem for INS redundant inertial
sensors and propose a FDI method using averaged parity
vectors (APV). We also propose an optimal threshold based
on navigation performance, not on false alarm, and propose an
optimal sample number.

By using multiple parity vectors we can reduce false alarm
and wrong isolation probability, and improve correct isolation
probability. Optimal sample number can be determined to
obtain as much correct isolation probability as we want and
obtain short detection time for small fault just larger than
threshold.
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