
ICCAS2003 October 22 -25, Gyeongju TEMF Hotel, Gyeongju, Korea

1. INTRODUCTION

An embedded system is accomplishing complex task to fast
development of the hardware and demand by user. The
software these computers are running is becoming
increasingly sophisticated with a wide range of applications,
including those which require connectivity such as e-mail and
web browsing. The major operating systems for embedded,
such as Microsoft Windows CE and embedded Linux, have
been used widely. In this paper, we will describe one of our
efforts of porting Windows CE to Arm based board device.
This paper is organized as follows: we will describe the target
platform. We described the system architecture and memory
map. Secondly, we describe briefly Windows CE OS. Thirdly,
we describe briefly about the porting process.

2. ARCHITECTURE OF THE HARDWARE

PLATFORM

2.1 ARM based board Architecture

The ARM based board employs a small single board
computer featuring the powerful, highly integrated and power
efficient Intel StrongARM SA1110. It includes 16MB of Flash,
32MB of SDRAM, an Ethernet controller, USB(client)
support, a Compact Flash interface, three serial ports, the
StrongARM-1110’s LCD controller interface, a CODEC
interface, and 16 general-purpose I/O lines.

Fig. 1 target device

 This work was supported in part by the Mechatronics Research Center of
Chonbuk National University

2.2 Memory Map
The SA1110 MMU logically expands the physical address

space by mapping addresses in a large virtual address space.
The entire virtual address space is 4GB. The upper 2GB is

used by the system for various purposes. The kernel mode
allows access to the entire virtual address space, whereas the
user mode is restricted to the lower 2GB of address space.

The MMU translates virtual addresses generated by the by
the CPU into physical addresses. Page Table is a mapping
from the physical address location of the RAM, or other types
of memory, to a statically mapped virtual address that is used
by applications and ISRs. Each entry in the Page Table
specifies a physical location in memory, the size of the
memory, and the static virtual memory address to which to
map it. The static virtual address is specified in the cached
memory range and the kernel can then create the uncached
address that points to the same physical address.

Fig. 2 Memory Map of SA1110

Porting Window CE Operating System to Arm based board device

Byungchan An*, and Woonchul Ham**

* Division of Electronics and Information Engineering, Chonbuk National University, Chonbuk, Korea
(Tel : +82-63-270-2399; E-mail: chanist@mail.chonbuk.ac.kr)

** Division of Electronics and Information Engineering, Chonbuk National University, Chonbuk, Korea
(Tel : +82-63-270-2400; E-mail: wcham@mail.chonbuk.ac.kr)

Abstract: Hand carried computing machinery and tools have been developed into an embedded system which the small footprint
operating system is contained internally. Windows CE which is one of imbedded operating system is a lightweight, multithreaded
operating system with an optional graphical user interface. Its strength lies in its small size, its Win32 subset API, and its
multiplatform support. Therefore we choose to port this OS on Arm based board that is provided high performance, low cost, and
low power consumption.
In this paper, we describe the architecture of ARM based board, the feature of Windows CE, techniques and steps involved in this
porting process.

Keywords: Windows CE, Embedded, Device Driver

User Space

Kernel Space

Cached

Uncached

0x00000000h

0x80000000h

0xA0000000h

0xC0000000h

Flash memory

Ethernet

PCMCIA

Register

SDRAM

0x00000000h

0x08000000h

0x20000000h

0x80000000h

0xC0000000h

0xFFFFFFFFh

OEMAddressTable
(Page Table)

Physical to Virtual
address mapping

ICCAS2003 October 22 -25, Gyeongju TEMF Hotel, Gyeongju, Korea

3. INTRODUCTION OF WINDOWS CE

Windows CE is a portable, real-time, modular operating
system that features popular Microsoft programming
interfaces and is supported by tools that enable rapid
development of embedded.

3.1 The OS Architecture

Windows CE was developed to support embedded
applications with a broad range of different hardware
platforms. Windows CE maintains most of the features of the
Windows operating systems. Windows CE is componentized
and ROMable. Windows CE isn’t backward compatible with
MS-DOS or Windows. Instead, Windows CE is a lightweight,
multithread operating system with an optional graphical user
interface. Its advantage is in its small size, its Win32 subset
API, and its multiplatform support. Windows CE is designed
to support a subset of the already familiar Microsoft API’s,
which proves to be much beneficial from the software
development point of view.

Window CE architecture consists of three main parts:

Kernel, OEM Adaptation Layer (OAL), and Boot Loader. The
kernel is the core of the OS, while OAL accommodates
different processors to allow Windows CE support of a rich set
of processors: MIPS, ARM, SHx, PowerPC. Although
Windows CE is designed to be portable across processors, it
contains processor-specific code. Therefore, OAL layer
development is always an interesting and crucial part for
porting CE to a given hardware platform. The Boot Loader
function is to allow the OS image to be booted from Rom or
other devices. Now we describe each of the main CE
components.

Kernel: the core functions of Windows CE, e.g., process
handling, memory management, resource management and
interrupt handling. It is designed to be small and fast. It is
provided by Microsoft and is reconstructed by developer
based on processor’s type and requirement for the system.

OAL: code specific to a particular hardware platform that is
built through the use of a given microprocessor, and it is
responsible for abstracting and managing hardware resources
of the processor. It is commonly supported by board support
package (BSP).

Fig. 3 Block diagram of the OAL architecture on a custom
platform

Boot Loader: responsible for booting the system by correctly
configuring the processor and peripheral chips. Its job is to set
the stage for starting the heart of most devices: the system
software. The development of Boot Loader is the first step for
porting.

3.2 Device Driver

A device is a physical or logical entity that requires control,
requires control, resource management, or both from the
operating system. A device driver is a software module that
manages the operation of a device, a protocol, or a service.
The architecture of most operating systems requires that
device driver run in kernel mode, But Windows CE drivers
run in user mode. Device drivers differ from applications in
that they’re DLLs.

 Commonly device driver architecture consists of two main
parts: Stream-interface driver and Native driver. The
stream-interface device driver model is used most commonly
to support installable device and is managed by the device
manager. Native device drivers used for built-in devices and
are usually managed by the Graphics, Windowing, and Events
Subsystem (GWES) module. Note, however, that native
drivers can also be managed by the device manager if their
upper interface uses the mechanism of the stream-interface
model. The stream interface is appropriate for any I/O device
that can be thought of logically as a data source or a data sink.
That is, any peripheral that produces or consumes streams of
data as its primary function is a good candidate to expose the
stream interface.

Fig. 4 Block diagram of the streams driver architecture

 The stream interface functions themselves are designed to

closely match the semantics of the usual file system APIs such
as ReadFile, IOControl, and so on. As a side effect of this
design, devices that are managed by the stream interface are
exposed to applications through the file system; applications
interact with the driver by opening special files in the file
system.

4. DEVELOPMENT OF THE EMBEDDED
SYSTEM

4.1 Boot loader
The boot loader is the beginning of the beginning. The boot

loader manages the boot process of the device by initializing
the device, downloading the OS image from the development
workstation to the target device, and starting the image on the

Application

File System

Windows CE
Kernel

 OAL

Device
Manager

Stream
Interface

Driver

 Built-in
Device

Software

Hardware

Interrupt events

Filesystem
IOCTLs

Hardware Platform

kernel

OAL

CPU

Custom Platform

HAL

Access and configuration
of physical resources

Boot Loader

ICCAS2003 October 22 -25, Gyeongju TEMF Hotel, Gyeongju, Korea

device.

The boot loader is typically used during the development
process to save time. Rather than transferring the development
image to the target device through a manual process, such as a
flash programmer or the IEEE 1149.1 standard for the test
access port and boundary scan (JTAG).

The elements of boot loader must be implemented: OEM
startup code, OEM platform initialization code, Image
download code, General purpose I/O code, Debug serial port
cord, Kernel startup code.

Fig. 5 Activity diagram of the CE boot process

Beginning with code relocation, the boot loader often
copies itself from one location in memory to another that
provides better access times, perhaps copying from flash
memory to RAM. Next, we configure the Memory
Management Unit (MMU) for virtual to physical address
mapping. The next step requires that we initialize all ports
used on this platform for debugging. We configure the
Ethernet for downloading the kernel. Once the download is
complete, the starting address is validated and the code jumps
into the kernel. The precise address to which the code jumps
depends on how the kernel was downloaded. The address of
the entry point must correspond to the address used in the
RAMIMAGE entry in the boot.bib file, after the ROMOFFSE
-T value is added.
The kernel is loaded at the memory by the boot loader.
Contents to be loaded at the memory expressed at the Fig. 6.

4.2 OAL

An OEM adaptation layer (OAL) is the layer between the
Windows CE kernel and the hardware of your target device.
OAL is a collection of functions that may be accessed by the

Fig. 6 Memory Map of the SDRAM is loaded by boot loader

CE operating system to gain access to platform-specific
features. The CE kernel calls these functions to obtain access
to the capabilities of the platform. OAL forms the connection
between the Windows CE kernel and the hardware.

The boot loader is built as a stand-alone image and the OAL
functions are included in the kernel image. OAL is the first
code to run in the CE kernel. The Fig. 3 shows the OAL
architecture.

The OAL development process is divided into three phases.
Phase 1. Developing a minimal set of OAL functions required

to successfully start the CE kernel
Phase 2. Expanding on the functionality of the first phase by

adding remote debugging support and interrupt
service routines (ISRs)

Phase 3. Adding features to provide module certification,
power management, and a persistent registry

OAL isolates the hardware with the kernel. It configures the
hardware that is not initialized in the boot loader step. After
the stage of OAL, hardware in the platform is configured.

5. CONCLUSION

In this paper, we have described the procedures of porting
Windows CE to Intel StrongArm SA1110 platform, which
includes building a boot loader, and implementing the OAL
Layer. As we can see, the modular design of Window CE
leads to a systematic approach to port it to an embedded
system. Through this process, we demonstrated it’s very
efficient to port Windows CE to any customized target
platform.

Inaddition, once the OS kernel is up and running, there are

various existing application available, such as Internet
browsing, word processing, multimedia and etc. When
necessary, we can also develop specific application using
WIN32 API, whose interfaces are quite familiar to most
developers from its general OS counterpart.

Free Ram

kernel

ethernet debug
… .

Boot Loader

Address Map Table

Initialization to zero

0x8D900000

0x8C140000

0x8C078000

0x8C002000

0x8C000000

ICCAS2003 October 22 -25, Gyeongju TEMF Hotel, Gyeongju, Korea

REFERENCES
[1] James Y. Wilson and Aspi Havevala, “Building Powerful

Platforms with Windows CE”, Addison Wesley
Publishers, s, 2001.

[2] Microsoft WinCE, “Microsoft Windows CE Platform
Builder Library”, Microsoft Inc.

[3] Abraham Silberschatz, Operating System Concept, 6th
edition, John Siley & Sons, Inc., July 2001.

[4] William B. Giles, “Assembly Language Programming”,
Macmillan Publishing Inc., 1991

[5] Hua Harry Li, Ph.d., Yu Raine Wang, Vincent Chju,
Qingling Ning, and Tong Zhang , “ Porting Window CE
Operating System to Broadband Enabled STB Devices”

[6] Douglas Boling, “ Programming Windows CE 2nd
Edition ”, Microsoft Press.

[7] Bill Gallas, Vandana Verma, “ Embedded Pentium
Processor System Design for Windows CE”, 1998 IEEE

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2159
	page21: 2160
	page31: 2161
	page41: 2162
	page51: 2163

