
ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, KOREA

Development for a Simple Client-based Distributed Web Caching System

Jong Ho Park∗ and Kil To Chong∗∗

∗Department of Electronics and Information Engineering, Chonbuk National University, Chonju 561-756, Korea

(Tel: +82-63-270-2478; Fax: +82-63-270-2451; Email:q1253@chollian.net)
∗∗Department of Electronics and Information Engineering, Chonbuk National University, Chonju 561-756, Korea

(Tel: +82-63-270-2478; Fax: +82-63-270-2451; Email:kitchong@chonbuk.ac.kr)

Abstract: Since the number of user-requests increases dramatically on the Internet, the servers and networks can be swamped

unexpectedly without any prior notice. Therefore, the end-users are waiting or refused for the responses of the contents from

the originating servers. To solve this problem, it has been considered that a distributed web caching system efficiently utilizes

structural elements of the network. Because a distributed web caching system uses the caches that are close to end-users on

the network, it transmits the contents to users faster than the original network system. This paper proposes a simple client-

based distributed web caching system(2HRCS) that client can directly perform object allocation and load balancing without an

additional DNS for load balancing in CARP (Cache Array Routing Protocol) and GHS (Global Hosting System) that are the

recent distributed web caching system protocol. The proposed system reduces the cost of setup and operation by removing DNS

that needs to balance the load in the existing system. The system has clients with consistent hashing method, so it extends its

environment to other distributed web caching system that has caches of different capacity. A distributed web caching system

is composed and tested to evaluate the performance. As a result, it shows superior performance to consistent hashing system.

Because this system can keep performance of the existing system and reduce costs, it has the advantage of constructing medium

or small scale CDN (Contents Delivery Network).

Keywords: Caching, 2HRCS, Simple Distributed Web Caching

1. Introduction

Since the delivery of the information over the web has been

recognized as a new medium, internet users have been ex-

plosively increased in these days. The requests which are

excessive against bottle necks or servers make the probabil-

ity of delay or failure highly. Several researches that use

the shared cache have been conducted to solve this problem.

These researches are classified as a communication method

[4][5][6][7] and a hash-based method [8][9][10][11][1][3] ac-

cording to the method that finds and allocates the object

among shared caches. The methods that use a communi-

cation waste the network resources among caches and the

duplicated allocation of the object in those methods causes

the waste of storing spaces. However, the methods that

use a hash function propose the solution of these problems.

Although CARP(Cache Array Routing Protocol)[1] of Mi-

crosoft corporation and Consitent Hashing[3] on GHS(Global

Hosting System)[2] of Akamai Technologes differ in utilizing

a hash function, these are general methods that recently are

used.

In CARP, the loads over the shared caches are regulated

through DNS [14] and the performance of load balancing

is improved by the optimization of object allocation among

caches, tuning the TTL(Time To Live) value of DNS [22].

The consistent hashing which is used in GHS uses an ad-

dictional DNS for the allocation and load balancing. Con-

sequently, CARP and consistent hashing system have the

disadvantage of high costs caused by their installation and

maintenance, and they also have the disadvantage of delay

caused by their hugeness and complexity.

If a client directly accesses the cache without additional

DNS, simple distributed web caching system could be orga-

nized without the installation of dedicated DNS and could

reduce delay within DNS. Especially, the small-scale CDN

on local environment can be implemented with low costs,

the load of DNS will be able to diminish in the existing

network system. Therefore, this paper developes a simple

client-based distributed caching system(2HRCS) that main-

tains the performance of existing consistent hashing system

and reduces the processing time. The developed system is

applied to the network that has different cache capacities

because the caches in real world is different from each other

with respect to their capacities. The system configuration

and the problem of shared cache protocol are discussed in

Section 2. Details about proposed client-based distributed

web caching system are described in Section3. Simulation

results and Conclusions are described in Section 4 and 5,

respectively.

2. Shared Cache Protocols
The shared cache protocols are classified as the method im-

plementing ICP and the hash routing method according to

the methods that allocate the object over shared caches, and

they have been developed through the mutual compensation

of weak points in each method.

As a shared cache method, ICP[8] is to overcome the limits,

such as processing time, capacity of storage , and number of

user connections, that are caused by multiple users sharing

a single cache. In order to find objects, the system with ICP

basically performs a communication among shared caches

through UDP/IP. In worst case, it communicates with N-1

caches excluding a primary cache. Therefore, when objects

are not in the cache, ICP method causes delay and wastes the

bandwidth of network because communication packets are



Fig. 1. A distributed web caching system of client-type.

excessively produced. Also, it wastes the storing space since

objects requested by clients are duplicated in each cache.

In order to ameliorate these problems, the methods that min-

imize the duplication of objects have been proposed. In these

mehods, clients with a basic hash function allocate objects

to corresponding caches by hashing the URL[13] of objects

to be requested[1][3][8][9][10][11]. These methods belong to

a hash routing protocol. They are classified as a client-type

and a DNS-type, viewed in the compostion of system. Also,

they are classified as a hash routing method[8][9][10][11][1]

with ICP and a consitent hashing method[3] without ICP,

viewed in the method of finding objects.A client-type that is

a basic concept represents a ideal configuration that clients

have a perfect hash function needed to allocate objects. As

shown in Figure 1, after client1 makes a direct connection to

shared cache1, an object is directly sent to client1 if it ex-

ists in the cache. Otherwise, it is copied to the cache and is

transmitted to client1 if it is not in the cache. Although the

configuration of this client-type can be accomplished by the

modification of a client browser, the modication is hard to

realize. Therefore, the system that is approximately a client-

type is configured by the modifications of a cache-type as

shown in Figure 2 and a DNS-type as shown in Figure 3. Ac-

tually, the system configurations of CARP[1] and consistent

hashing[3] are a cache-type and a DNS-type, respectively.

In ICP, the methods[8][9][10][11] with simple hash routing

use a basic hash function. A basic hash function is expressed

as h(u) = f(u)mod p in a distributed caching environment,

where u is URL, h(u) is hash function that makes fixed

length of hashed value, and p is the number of caches. Con-

sequently, the corresponding location of hashed value that

represents the URL of an object can be determined within

shared caches. That is, the communiation process that was

necessary to find an object can be minimized by the direct

configuration among clients and caches, reducing the dupli-

cation of an object at a maximum level.

However, every URL should be repeatedly hashed and al-

located to caches whenever the addition or the removal of

caches would occur. Therefore, Hit rate could be deterio-

Fig. 2. A distributed web caching system of cache-type.

rated by increased error or failure for user requests. Each of

CARP[1] and consistent hashing[3] solves this problem in dif-

ferent ways. Clients use robust hashing in the configuration

of CARP[1] that is shown in Figure 2. That is, hash function

is used to create each pairs of h(u, c1), h(u, c2), · · · , h(u, cn),

where u is a hashed value of URL and c is a hashed value

of cache domain name. When an object is correspond-

ing the URL of n-th shared cache that has highest value

among hashed values, it is requested to patch from config-

ured cache1. The load of web cache system is regulated

by DNS when client1 patches the IP address of configured

cache1, if the domain name of configured cache1 is set in

client1. Configured cache1 requests an object by forwarding

the URL of shared cahce1 that has a highest hashed value,

and it forwards an object to client without copying as soon

as it receives a corresponding object. In order to apply to

the environment that has different cache capacities, CARP

can be utilized in proportion to the probability that hashed

value of URL could be allocated to cache. That is, it can

be extended to heterogeneous system. However, it cannot

reduce the DNS usage or a delay on DNS.

Figure 3 shows the system of consistent hashing [3] on GHS

[2]. Client uses a simple hash function to make a hashed

value of URL u, and creates the domain name with hashed

value in order to allocate the URL to the N imaginary caches.

For instance, the URL of v101.cnn.com can be made. In this

case, top-level DNS finds low-level DNS of distributed web

caching system close to a user using domain delegation. And,

client patch the IP of the real cache and requests the URL,

after low-level DNS allocates a corresponding object to the

cache. To begin with, cache sends an object to client af-

ter patching it from original web server. Then, cache will

send an object on its storing space if client requests it after-

ward. Consistent hashing was not intended to expend to the

heterogeneous system, because it established on the basis of

efficient cache capacity. Furthermore, it produces a delay on

DNS although it is quite different from CARP[1]. And, it

could bring about the maintenance problem of DNS if the

system grows large.



Fig. 3. A distributed web caching system of DNS-type.

3. Development of a Simple Distributed Web
Cache System with Client-based

The proposed client-based distributed web caching system in

this paper is hybrid robust hash routing client system with

single-tier configuration. The proposed system will be writ-

ten as 2HRCS from now on. Each client is configured to

include consistent hashing algorithm and uses new load bal-

ancing algorithm that is different from old one. As, shown in

Figure 4, this system consists of many programs, such as CP

Helper, Proxy Helper, and client. Throughout this paper,

the load information consists of a load information flag and

a list of hot pages, and the cache information includes the

load information and IP addresses.

CP Helper is server-side application program, and it peri-

odically receives and stores the cache information of each

cache. When clients initially connect to a web server, CP

Helper transmits the information to clients. That is, clients

receive the cache information of shared caches that is close to

them. Because CP Helper has a load information flag that

is used to balance the load, clients can allocate objects to

shared cache when they connect to the CP Helper.

Proxy Helper can produce a load information flag on the

basis of maximum processing capacity that represents the

total number of HTTP requests served by cache during unit

time. To produce the flag, it is coded with Perl because

Perl can manipulate the enormous log file of each shared

cache at a high speed. And, C language is used to realize

TCP/IP communication. On the response of CP Helper’s

request, Proxy Helper analyzes the log file of cache. It

finds the hot pages(hot virtual names) that have relatively

high number of requests with respect to total number of re-

quests. Then, it makes the corresponding load information

flag(H:high, M:middle, L:low), according to the maximum

processing capacity allowed by a cache.

A redirecting client browser is implemented with HTTP

1.1[12]. And it receives the cache information from CP

Helper, fetching the HTML source from a web server. Ini-

tially, client tries to find an existing DNS on Internet when it

Fig. 4. The Hybrid Robust Hash Routing Client Sys-

tem(2HRCS).

gets the IP address of CP server. Afterwards, it allocates the

object URL that was originally contained in HTML source

to caches without DNS, using builtin consistent hashing and

load balancing algorithm. That is, a client does not use DNS

except when it gets the IP address corresponding to the do-

main name of CP. The development of a redirecting client

browser leads an existing distributed web caching system to

a simple system without using DNS, so it makes a delay on

DNS less.

To balance the load, 2HRCS operates in two ways. Firstly,

it executes hard load balancing when the number of request

per unit time is close to the maximum processing capacity,

because the number of requests on a cache could temporar-

ily show the dramatic increase. When client accesses the

CP Helper, it receives the load information flag that is de-

fined with three levels. And then, client allocates all hot

pages to the cache that has low level of the load informa-

tion flag. Therefore, the load is distributed to the cache

gradually and certainly, whenever the connection of client is

increased. In last case, load balancing would be activated if

hot page that has the considerably high number of requests

exists, although total requests are lower than maximum pro-

cessing capacity. In this case, distributing hot pages does not

waste the storage space of a cache because the number of hot

pages that will be duplicated to other cache is quite small.

Client distributes the hot page that has the highest number

of requests to the cache that has the lowest load. Although

this load balancing would be slower than the first case, it

makes the uniform load balancing of shared caches because

it distributes requests more precisely. The load balancing is

performed by setting up the range of the load information

flag for each cache in proportion to the maximum processing

capacity, whether the maximum processing capacity is same

across shared caches or not. The advantage of this system is

that the load balancing can be realized in a heterogeneous

distributed web caching system that its shared caches have

different processing capacities each other. Without DNS or



complicated calculation, this system uses simple load infor-

mation flags that were originally received from CP Helper.

Fig. 5. A simulation system.

4. Simulation
4.1. System Setup for Simulation

Generating the desired amount of requests could be com-

plicated in existing client, so we modified Surge[15] that is

developed in Boston University. Hash function[16] is utilized

to produce hashed value for the URL of object. As soon as

Surge starts to run, each client thread fetches a list of caches

from CP Helper. And it gets the load information according

to requests from caches. A client uses the consistent hash-

ing algorithm, produces 1000 imaginary caches by means of

modulo-arithmetic, stores up hashed value for IP Address

of real caches in a binary tree, allocates imaginary caches

to real caches, and performs the subdivision of blocks with

copied caches. Afterwards, using hashed values of URLs,

a client finds the information of real cache IP address that

is corresponding to the imaginary cache name, and receives

an object from the cache after requesting its URL. To per-

form this experiment, the parameter of Zipf’s law should be

tuned to make popularity taking account of a characteristic

of cache[17][18][19]. If all files of a server are requested, the

number of requests for a file is expressed as p = αγβ , where

α is a positive constant, and γ = EventsDoc
EventsT otal

is rank of files.

The estimated value β is supposed to be 1 when web server

takes workload, and it is tuned to a smaller value than 1

when cache server takes load. In experiments, the β is set to

0.8. As an operating system, Linux Redhat 7.2 kernel ver-

sion 2.4.7 is employed to install the request generator. And

the modified Surge is set up in IBM compatible PC.

CP Server is configured to provide contents using Apache

release 1.3[21] that is generally used in Pentium III machine

with Linux. Additionally, CP Helper is developed on CP

Server. Client accesses Apache and CP Helper simultane-

ously. Like a client, Surge is modified to perform the function

that requests object files. To analysis a logging information,

access log on /var/log/httpd/ is used. This file contains ac-

cess IP, access time, HTTP command, and error message.

Therefore, the load information of web server can be ana-

lyzed by PERL script or C language. Cache servers are im-

plemented with Squid release 2.3[20] on three IBM compati-

ble machines to configure a distributed web caching system.

Each server responds with default port to HTTP requests.

Proxy Helper on each cache is installed to analyze Squid log

file and communicate with CP Helper. When CP Helper

requests the load information, Proxy Helper transmits the

information to CP Helper after analyzing the log file for a

time interval. Load information is set to be overlapped data

using smaller requesting interval. And, the load balancing

can cope with the dynamic changes of cache loads. The net-

work configuration of the experimental system is shown in

Figure 5.

4.2. Simulation Results

When the same amount of requests is given to each dis-

tributed caching system that each cache has same processing

capacity per unit time, the load of distributed caching sys-

tem with consistent hashing is shown in Figure 6, and that

of 2HRCS is shown Figure 7. The performance of load bal-

ancing per unit time on each proxy is better in 2HRCS than

in consistent hashing. When caches have different processing

capacities, that is, the distributed web caching network is a

heterogeneous system, the load of consistent hashing system

is same as Figure 6 and the that of 2HRCS is shown in Fig-

ure 8. In this case, processing capacities of each cache are

voluntarily set to 2000 in proxy 1, 3000 in proxy 2, and 8000

in proxy 3.

As shown in Figure 8, requests on proxy1 and proxy2 is dis-

tributed to proxy3. In this figure, x axis and y axis represent

a time and the number of requests, respectively. The differ-

ences of average hit rates are negligible as shown in Table 1.

Using clients, 2HRCS can perform the load balancing and

object allocation without DNS, so can minimize a delay on

DNS.

Fig. 6. The load of Consistent hashing in homogeneous

system.

5. Conclusions
In this paper, several problems of protocols on exist-

ing distributed web caching system have been investgated.

Through the modification of client browser that has consis-



Fig. 7. The load of 2HRCS in homogeneous system.

Fig. 8. The load of 2HRCS in heterogeneous system.

tent hashing, the client-type system is configured to simplify

the system without additional DNS that is an essential el-

ement in CARP[1] and GHS[2]. The proposed system is

implemented to balance the load on client side, regulating

the generation limits of the load information flag in propor-

tion to the maximum requests of each distributed cache. The

simulation results show efficient performance in realistic dis-

tributed web caching system that deals with different caches

in capacity.

In conclusion, proposed system can reduce the expenses of

installation and maintenance, because it is simplified to re-

move the DNS that is necessary to perform load balancing

Table 1. Average hit rate of each proxy(shared cache).

Consistent Hashing 2HRCS in 2HRCS in

Cache in homogeneous homogeneous heterogeneous

system system system

Proxy1 99.155 % 99.145 % 99.130 %

proxy2 99.384 % 99.410 % 99.358 %

proxy3 99.510 % 99.495 % 99.730 %

in other systems. Since it extends the consistent hashing

to the heterogeneous environment, its performance is supe-

rior to the consistent hashing system in real distributed web

caching systems. Therefore, this system can be applied to

small or middle-sized CDN with low costs, keeping the per-

formance of existing system unchanged. Furthermore, this

client-type distributed web caching system could be config-

ured more efficiently, if the setting bounds of load informa-

tion flag is dynamically adjusted according to other load pa-

rameters that will be added to caches in the future.

References
[1] V. Valloppillil and K. W. Ross, Cache ar-

ray routing protocol v1.1. Internet Draft,

http://www.globecom.net/ietf/draft/draft-vinod-

carp-v1-03.html, 1998.

[2] Leighton, et al., Global hosting system. US

Patent, 6,108,703, http://www.delphion.com/cgi-

bin/viewpat.cmd/US06108703 , 2000.

[3] D. Karger, et al., Web caching with consistent hash-

ing, In Proceedings of the 8th International World Wide

Web Conference,May 1999.

[4] A. Chankhunthod, et al., Hierarchical internet object

cache, In USENIX, 1996.

[5] R. Malpani, et al., Making world wide web caching

servers cooperate, In forth International World Wide

Web Conference, 1995.

[6] S. A. Gadde, et al., A taste of crispy squid,

In Workshop on Internet Server Performance,

http://www.cs.duke.edu/ari/cisi/crisp, 1998.

[7] L. Fan, et al., Summary Cache:a scalable wide-area web-

cache sharing protocol, Technical Report 1361, Com-

puter science dept., University of wisconsin, 1998.

[8] D. Wessels and K. Claffy, Internet cache

protocol(ICP) version 2., RFC 2187,

http://icp.ircache.net/rfc2187.txt, 1997.

[9] V. Valloppillil and J. Cohen, Hierarchical HTTP routing

protocol. Internet Draft, http://icp.ircache.net/draft-

vinod-icp-traffic-dist-00.txt, 1997.

[10] D. G. Thaler and C. V. Ravishankar, Using named-

based mappings to increase hit rates, To appear in

IEEE/ACM Transactions on Networking, 1997.

[11] Sharp, Super proxy script:How to make distributed

proxy servers by URL hashing, White Paper,

http://naragw.sharp.co.jp/sps/, 1996.

[12] R. Fielding, et al., Hypertext trans-

fer protocol-HTTP/1.1, RFC 2068,

http://www.faqs.org/rfcs/rfc2068.html, 1997.

[13] T. Berners-Lee, et al., Uniform Resource Loca-

tors(URL), RFC 1738, Network Working Group, 1994.

[14] P. Albitz and C. Liu, DNS and BIND(3rd edition)

O’Reilly & Associates Inc., 1998.

[15] P. Barford and M.E. Crovella, Generating representa-

tive web workloads for network and server performance

evaluation, In Proceedings of ACM SIGMETRICS Con-

ference, 1998.



[16] R. Rivest, The MD4 Message-Digest Algorithm, RFC

1320, Network Working Group, 1992.

[17] A. Mahanti and C. Williamson, Web proxy workload

characterization, Technical report, Department of Com-

puter Science, University of saskatchewan, 1999.

[18] C. Cunha, et al., Characteristics of WWW client-based

traces, Technical report BU-CS-95-010, Department of

Computer Science, Boston University, 1995.

[19] M. Arlitt, et al., Workload characterization of a web

proxy in a cable modem environment, HP Labs Techni-

cal report HPL-1999-48, 1999.

[20] D. Wessels, Squid Web Proxy Cache,

http://www.squid-cache.org.

[21] R. McCool, The Apache Software Foundation,

http://www.apache.org.

[22] X. Tang and S. T. Chanson, Optimal Hash Routing for

Web Proxies, In Proceedings of the 21st IEEE Interna-

tional Conference on Distributed Computing Systems

(ICDCS), 2001.


	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2131
	page21: 2132
	page31: 2133
	page41: 2134
	page51: 2135
	page61: 2136


