
ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

1. INTRODUCTION

Many machines (M68K, SPARC, PowerMac) use graphical
console because either the hardware does not support (VGA)
text mode, or because the firmware programs the hardware
into a graphical mode. Thus the linux kernel needs to be aware
of this and support graphical consoles on these architechtures.

Graphical consoles will also gain more importance on the
Intel platform, as VGA compatibility will be phased out by
many graphics chipset manufacturers in the near future. An
early example of this the Cyrix MediaGX], which provides
VGA compatibility through its BIOS only.

The frame buffer device provides an abstraction for the
graphics hardware. It represents the frame buffer of some
video hardware and allows application software to access the
graphics hardware through a well-defined interface, so the
software does not need to know about the low level (hardware
register) stuff (except for hardware acceleration)[1].

Since years there has been minor support for graphical
consoles in the linux kernel, but it differed a lot among the
different platforms. Starting with kernel 2.1.107, the frame
buffer device abstraction become completely integrated in the
standard kernel sources and will become the standard way to
access graphics hardware. But it is definitely not new: it
originated from linux/M68K at the end of 1994 and has
proven to fulfill its task during the previous years.

The frame buffer device abstraction has the following
advantages:

(1) It provides a unified method to access graphics

hardware across different platforms.
(2) Drivers can be shared among different architectures,

which reduces code duplication. There were already three
different drivers for the ATI Mach64 before. In the ideal case,
a frame buffer device driver contains a chipset driver core,
with machine and bus dependent probe
code(Zorro/PCI/ISA/Open Firmware/…).

(3) It provides simple multi-head: currently up to 8 frame
buffer devices (displays) are supported. Unfortunately the
input part of the console subsystem is not ready for multi-head
yet.

(4) On boot up, you get one or more penguin logos (with or
without beer) The more CPUs you have, the more penguins
you will see.

2. FRAME BUFFER INTERNAL API
Now that we understand the basic ideas behind video card

technology and mode setting, we can now look at how the

framebuffer devices abstract them. Also, we will see that
fbdev actually handles most of the mode setting issues for you
to make life much easier. In the older API, the console code
was heavily linked to the framebuffer devices. The newer API
has now moved nearly all console handling code into fbcon
itself. Now, fbcon is a true wrapper around the video card’s
abilities. This allows for massive code reduction and easier
driver development. A good example of a framebuffer driver
is the virtual framebuffer (vfb). The vfb driver is not a true
framebuffer driver. All it does is map a chunk of memory to
userspace. It's used for demonstration purposes and testing.
2.1 Data Structures

The framebuffer drivers depend heavily on four data
structures. These structures are declared in fb.h. They are
fb_var_screeninfo, fb_fix_screeninfo, fb_monospecs, and
fb_info. The first three can be made available to and from
userland. First let me describe what each means and how they
are used.

fb_var_screeninfo is used to describe the features of a video
card you normally can set. With fb_var_screeninfo, you can
define such things as depth and the resolution you want.

The next structure is fb_fix_screeninfo. This defines the
properties of a card that are created when you set a mode and
can't be changed otherwise. A good example is the start of the
framebuffer memory. This can depend on what mode is set.
Now while using that mode, you don't want to have the
memory position change on you. In this case, the video
hardware tells you the memory location and you have no say
about it.

The third structure is fb_monospecs. In the old API, the
importance of fb_monospecs was very little. This allowed for
forbidden things such as setting a mode of 800x600 on a fix
frequency monitor. With the new API, fb_monospecs prevents
such things, and if used correctly, can prevent a monitor from
being cooked.

The final data structure is fb_info. This defines the current
state of the video card. fb_info is only visible from the kernel.
Inside of fb_info, there exist a fb_ops which is a collection of
needed functions to make fbdev and fbcon work.

2.2 Driver Layout

Here I describe a clean way to code your drivers. A good
example of the basic layout is vfb.c. In the example driver, we
first present our data structures in the beginning of the file.
Note that there is no fb_monospecs since this is handled by
code in fbmon.c. This can be done since monitors are
independent in behavior from video cards. First, we define our
three basic data structures. For all the data structures I defined
them static and declare the default values. The reason I do this

Development of a Frame Buffer Driver for Embedded Linux Graphic System

Ga-Gue Kim, Woo-Chul Kang, Young-Jun Jung, and Hyung-Seok Lee

Embedded S/W Technology Center, ETRI, Daejeon, Korea
(Tel : +82-42-860-1123; E-mail: {ggkim, wchkang, jjing, hyslee@etri.re.kr)

Abstract: A frame buffer device is an abstraction for the graphic hardware. It allows application software to access the graphic
hardware through a well-defined interface, so that the software doesn’t need to know anything about the low-level interface stuff.
We develop a frame buffer driver for VIA’s CLE266 graphic system based on ‘Qplus’, an embedded linux operating system
developed by ETRI. Then, it will be seen that our frame buffer system is applied to embedded solutions such as movie player and
X server successfully.

Keywords: frame buffer, embedded linux, Qplus, abstract console

is because it's less memory intensive than to allocate a piece of
memory and filling in the default values. Note that drivers that
support multihead (multiple video cards) of the same card,
then the fb_info should be dynamically allocated for each card
present. For fb_var_screeninfo and fb_fix_screeninfo, they still
are declared static since all the cards can be set to the same
mode.

2.3 Initialization and boot time parameter handling

There are two functions that handle the video card at boot
time:

int xxfb_init(void);
int xxfb_setup(char*);

In the example driver as with most drivers, these functions

are placed at the end of the driver. Both are very card specific.
In order to link your driver directly into the kernel, both of
these functions must add the above definition with extern in
front to fbmem.c. Add these functions to the following in
fbmem.c:

static struct {

const char *name;

int (*init)(void);
int (*setup)(char*);

} fb_drivers[] __initdata = {
#ifdef CONFIG_FB_YOURCARD

{ "driver_name", xxxfb_init, xxxfb_setup },
#endif

Setup is used to pass card specific options from the boot

prompt of your favorite boot loader. A good example is:

boot: video=matrox: vesa: 443

The basic setup function is:

int __init xxxfb_setup(char *options)
{

char *this_opt;

if (!options || !*options)
return 0;

 for (this_opt = strtok(options, ","); this_opt;
this_opt = strtok(NULL, ","))
 if (!strcmp(this_opt, "my_option")) {
/* Do your stuff. Usually set some static flags that the

driver later uses */
 } else if (!strncmp(this_opt, "Other_option:", 5))

strcpy(some_flag_driver_uses, this_opt+5);
} else

}
}
The xxfb_init function sets the initial state of the video card.

This function has to consider bus and platform handling since
today most cards can exist on many platforms. For bus types
we have to deal with, there are PCI, ISA, and zorro. Also,
some platforms offer firmware that returns information about
the video card. In this case, we often don't need to deal with
the bus unless we need more control over the card. Let us look
at Open Firmware that’s available on PowerPCs. If you are
going to use Open Firmware to initialize your card, you need
to add the following to offb.c.

#ifdef CONFIG_FB_YOUR_CARD
extern void xxxfb_of_init(struct device_node *dp);
#endif /* CONFIG_FB_YOUR_CARD */
Then in the function offb_init_driver, you add something

similar to the following:
#ifdef CONFIG_FB_YOUR_CARD
if (!strncmp(dp->name,"Open Firmware number of your

card ", size_of_name)) {
xxxfb_of_init(dp);
return 1;

}
#endif /* CONFIG_FB_YOUR_CARD */

If Open Firmware doesn't detect your card, Open Firmware

sets up a generic video mode for you. Now in your driver you
really need two initialization functions.

The next major part of the driver is declaring the functions
of fb_ops that are declared in fb_info for the driver.

The first two functions, xxfb_open and xxfb_release, can be
called from both fbcon and fbdev. In fact, that's the use of the
user flag. If user equals zero then fbcon wants to access this
device, else it's an explicit open of the framebuffer device.
This way, you can handle the framebuffer device for the
console in a special way for a particular video card. For most
drivers, this function just does a MOD_INC_USE_COUNT or
MOD_DEC_USE_COUNT.

These are the functions that are at the heart of mode setting.
There do exist a few cards that don't support mode changing.
For these we have this function return an -EINVAL to let the
user know he/she can't set the mode. Actually, set_var does
more than just set modes. It can check them as well. In
fb_var_screeninfo, there exists a flag called activate. This flag
can take on the following values: FB_ACTIVATE_NOW,
FB_ACTIVATE_NXTOPEN, and FB_ACTIVATE_TEST.

FB_ACTIVATE_TEST tells us if the hardware can handle
what the user requested. FB_ACTIVATE_NXTOPEN sets the
values wanted on the next explicit open of fbdev. The final
one FB_ACTIVATE_NOW checks the mode to see if it can be
done and then sets the mode. You MUST check the mode
before all things. Note that this function is very card specific,
but I will attempt to give you the most general layout. The
basic layout then for xxxfb_set_var is:

static int vfb_set_var(struct fb_var_screeninfo *var, struct

fb_info *info)
{

int line_length;
/* Basic setup test. Here we look at what the user passed

in that he/she wants.For example to test the fb_var_screeninfo
field vmode like its done in vfb.c.Here we see if the user has
FB_VMODE_YWARP. Also we should look to see if the user
tried to pass in invalid values like 17 bpp (bits per pixel) */

/* Remember the above discussion on how monitors see a
mode. They don't care about bit depth. So you can divide the
checking into two parts. One is to see if the user changed a
mode from say 640x480 at 8 bpp to 640x480 at 32
bpp.Remember the var in fb_info represents the current video
mode. Before we actually change any resolutions we have to
make sure the card has enough memory for the new mode.
Discovering how much memory a video card has varies from
card to card. Also finding out how much memory we have is
done in xxxfb_init since this never changes unless you add
more memory to your card, which requires a reboot of the
machine anyway. You might have to do other tests depending
on make of your card. Note the par filed in fb_info. This is
used to store card specific data. This data can affect set_var.

Also it is present to allow other possible drivers that could
effect the framebuffer device such as a special driver for an
accel engine or memory mapping the Z buffer on a card */

/* Summary. First look at any var fields to see if they are
valid. Next test hardware with these fields without setting the
hardware. An example of one is to find what the line_length
would be for the new mode. Then test the following: */

if ((line_length * var->yres_virtual) > info->fix.smem_len)
return -ENOMEM;

 if (info->var.xres != var->xres || info->var.yres !=
var->yres || info->var.xres_virtual != var->xres_virtual ||
info->var.yres_vitual != var->yres_virtual) {

 /* Resolution changed !!! */

 /* Next you must check to see if the monitor can

handle this mode. Don't want to fry your monitor or mess up
the display really badly */

if (fbmon_valid_timings(u_int pixclock, u_int htotal, u_int
vtotal, const struct fb_info *fb_info))

/* Can't handle these timings. */
return -EINVAL;

/* Timings are okay. Next we see if we really want to
change this mode */

if ((activate & FB_ACTIVATE_MASK) ==
FB_ACTIVATE_NOW) {

/* Now lets program the clocks on this card. Here the code

is very card specific. Remember to change any fields for fix in
info that might be affected by the changing of the resolution.
*/

info->fix.line_length = line_length;
/* Now that we have dealt with the possible changing

resolutions lets handle a possible change of bit depth. */
if (info->var.bits_per_pixel != var->bits_per_pixel) {

if ((err = fb_alloc_cmap(&info->cmap, 0, 0)))
return err;

}
}

/* We have shown that the monitor and video card can
handle this mode or have actually set the mode. Next the
fb_bitfield structure in fb_var_screeninfo is filled in. Even if
you don't set the mode you get a feel of the mode before you
really set it. These are typical values but may be different for
your card. For truecolor modes all the fields matter. For
pseudocolor modes only the length matters. Thus all the
lengths should be the same (=bpp). */

switch (var->bits_per_pixel) {
case 1:
case 8:
/* Pseudocolor mode example */

var->red.offset = 0;
var->red.length = 8;
var->green.offset = 0;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
break;

case 16: /* RGB 565 */
var->red.offset = 0;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 6;
var->blue.offset = 11;

var->blue.length = 5;
var->transp.offset = 0;
var->transp.length = 0;
break;

case 24: /* RGB 888 */
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 16;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
break;

case 32: /* RGBA 8888 */
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 8;
 var->green.length = 8;
var->blue.offset = 16;
var->blue.length = 8;
var->transp.offset = 24;
var->transp.length = 8;
break;

}
/* Yeah. We are done !!! */

}

The function xxxfb_setcolreg is used to set a single color

register for a video card. To use this properly, you must
understand colors, which is described above. This routine sets
a color map entry. The regno passed into the routine represents
the color map index which is equal to the color that’s
composed of the amount of red, green, blue, and even alpha
that are also passed into the function. For pseudocolor modes,
this color map index (regno) represents the pixel value. So if
you place a pixel value of regno in video memory, you get the
color that’s made of the red, green, blue that you passed into
xxxfb_setcolreg. Now for truecolor and directcolor mode, it’s
a little different. In this case, we simulate a pseudo color map.
The reason for this is the console system always has a color
map, which has 16 entries. In fb_info, there exist the
pseudo_palette, which gives a mapping from a non-color map
mode to a color map based system. The pseudo_palette always
has 17 entries. The first 16 is for the console colors and the
last one for the cursor. So if we wanted to display the 4 entry
in the color map of the console, we would place the value of
info->psuedo_palette[4] directly into the video memory. This
is, of course, taken care of by fbcon. You just need to code the
"formula" that does this translation. An example follows for
32-bit mode:

red >>= 8;
green >>= 8;
blue >>= 8;
info->pseudo_palette[regno] =

(red << info->var.red.offset) |
(green << info->var.green.offset) |
(blue << info->var.blue.offset);

Here, we first scale down the color components. Each color

passed to set_colreg is 16 bits in size. For 32-bit mode, each
color is 8 bits in size. Next, we OR the colors together after we
have offseted them. The offset is used because the pixel layout
in 32 bits could be RBGA, ARGBA, etc. In setcol_reg of vfb.c,
is the standard way to deal with packed pixel format of various

image depths. Regno is the index to get this particular color.

That does it for required functions besides the set of needed
accel functions, which has not been discussed yet. If the video
card doesn't support the function, then we just place a NULL
in fb_ops. The next function in fb_ops is xxxfb_blank. This
function provides support for hardware blanking. For
xxxfb_blank, the first parameter represents the blanking modes
available. They are VESA_NO_BLANKING,
VESA_VSYNC_SUSPEND, VESA_HSYNC_SUSPEND, and
VESA_POWERDOWN. VESA_NO_BLANKING powers up the
display again. VESA_POWERDOWN turns off the display.
This is a great power saving feature on a laptop.

The next optional function is xxxfb_pan_display. This
function enables panning. Panning is often used for scrolling.

The ioctl function gives you the power to take advantage of
special features other cards don't have. If your card is nothing
special then just give this fb_ops function a NULL pointer.
The sky is the limit for defining your ioctl calls.

There exists a default memory map function for fbdev, but
sometimes it just doesn't have the power you truly need. A
good example of this is video cards that work in sparc
workstations that need their own mmap functions because of
the way sparcs handle memory is different from other
platforms. This is true even for sparcs with PCI buses.

Now here is the next class of functions that are optional --
xxxfb_accel_init and xxfb_accel_done. xxxfb_accel_init really
depends on the card. It is intended to initialize the engine or
set the accel engine into a state so that you can use the
acceleration engine. It also ensures that the framebuffer is not
accessed at the same time as the accel engine. This can lock a
system. Usually, there exists a bit to test to see if an accel
engine is idle or if the card generates an interrupt. For cards
that used the old fb_rasterimg, this function replaces it. Some
cards have separate states for 3D and 2D. This function
insures that the card goes into a 2D state. Just in case a
previous application set the accel engine into a 3D state or
made the accel engine very unhappy. The next function that
encompasses this set is xxxfb_accel_done. This function sets
the video card in a state such that you can write to the
framebuffer again. You should provide both functions if your
driver uses even one hardware accelerated function. The
reason being is to ensure that the framebuffer is not accessed
at the same time as the accel engine.

Finally, the third class of fb_op functions. Like the first,
they are required. If your card does not support any of these
accelerated functions, there exist default functions for packed
pixel framebuffer formats. They are cfba_fillrect,
cfba_copyarea, and cfba_imgblit. If your driver supports some
but not all of the accels available, you can still use some of
these software emulated accels. Each software-emulated accel
is stored in a separate file. Now lets describe each accel
function. Before we discuss these functions we need to note
not to draw in areas pass the video boundaries. If it does, you
need to adjust the width and height of the areas to avoid this
problem.

The first function just fills in a rectangle starting at x1 and
y1 of some width and height with a pixel value of packed
pixel format. If the video memory mapping is not a direct
mapping from the pixel value (not
FB_TYPE_PACKED_PIXEL), you will have to do some
translating. There are two ways to fill in the rectangle,
FBA_ROP_COPY and FBA_ROP_XOR. FBA_ROP_XOR
exclusive ORs the pixel value with the current pixel value.
This allows things like quickly erasing a rectangular area. The
other function just directly copies the data.

The next function is xxxfb_copyarea. It just copies one area

of the framebuffer at source x and source y of some width and
height to some destination x and y.

The final function is xxxfb_imageblt. This function copies
an image from system memory to video memory. You can get
really fancy here but this is fbdev, which has the purpose of
mode setting only. All the image blit function does is draw
bitmaps, image made of a foreground and background color,
and a color image of the same color depth as the framebuffer.
The second part is used to draw the little penguins. The
drawing of bitmaps is used to draw our fonts.

3. QPLUS TARGET BUILDER

Current embedded systems increasingly demand the
services of a sophisticated, state-of-the-art operating system.
Many such systems require advanced capabilities like: high
resolution and user-friendly graphical user interface(GUIs);
TCP/IP connectivity; substitution of reliable (and low power)
flash memory; support for 32-bit high-speed CPUs.

These needs led many embedded system developer to look
Linux as a convenient and low-cost way to solve their
problems. Linux is open-source and has many modern OS
functionalities required for those systems, and it supports
many platforms and devices also.

But embedded Linux lacks of convenient development tools
which help developer configure, build and deploy the system.
Linux and most application on it are open-source and that
means you must do every chore to build a working embedded
Linux system.

If you do embedded Linux development, First, you need to
install cross tool-chain, libraries and header files. And the next
step is creating kernel and root image. In this step, you must
configure and build every needed components. Then, you
should create bunch of boot scripts and configuration files
(usually placed in /etc directory). Finally, you must create and
transfer bootable image to the target board. Figure 1 shows
general development sequence of embedded Linux.

Build cross-toolchain

Configure/ Build kernel

Configure/ Build basic applications

Build root filesystem

Build bootable image

Deploy to the target (NFS, initrd,...)

Develop your application

Optimize

Deploy final image to the target(flashing,...)

Fig. 1 Development procedure Embedding Linux.

Most of these procedures have to be done repeatedly until

the final deployment. Configuration, build and deployment to
the target has been done manually and separately without
assistance of integrated tools. It is highly error-prone and
time-consuming job. Worst of all, Linux is not well
documented. It made embedded Linux development require
long learning time and high experience, and it lead to delayed
time-to-market. Embedded system developers want their
operating environment to just work so they can get to work

right away on developing the actual application.

Tools to automate and assist this development process can
make developer to save much time and effort. Recent survey
showed 69% of the Embedded Linux developers is willing to
pay for development tools.

In particular, the user demands a system where the tools are
closely integrated and have a consistent user interface and help
facility.

Target Builder is a toolkit to assist and to automate all
development process. It shows all configurable options of
kernel, applications and target environment in a tree. So
developers can navigate all those options and set them to
proper values. Target Builder shows on-line help for each
option and check dependencies among them. If dependencies
are violated, Target Builder informs the user what caused the
violation. This dependency checking can dramatically reduce
errors in configuration stage. It automates all other process;
root file system generation, optimizations and deployment to
the target[3].

REFERENCES

[1] Geert Uytterhoeven, “The Linux Frame Buffer Device

Subsytem,” http://www.cs.kuleuven.ac.be/~geert
[2] James Simmons, “Linux Framebuffer Driver Writing

HOWTO,” http://metalab.unc.edu/LDP, 1999.
[3] W. C. Kang, H. C. Yun, H. N. Kim, “Target Builder: An

Embedded Linux Development Toolkit,” Proceedings of
the IASTED Software Engineering and Appplication(SEA
‘02’) , pp. 163-167, Boston, USA, 2002.

[4] CLE266 Chipset Datasheet, VIA Technologies, inc. and
S3 Graphics, inc., 2003.

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2116
	page21: 2117
	page31: 2118
	page41: 2119
	page51: 2120

