
 

1. INTRODUCTION 
 

Three versions of the PSR (Public Service Robot) systems 
are under development towards indoor public services at the 
KIST (Korea Institute of Science and Technology). 
Well-defined control architecture is essential to implement 
complex robot systems like PSR systems for several reasons. 
First, control architecture integrates different kinds of 
hardware and software modules. Second, the architecture 
plays an important role on maintenance problems such as 
revision of existing components and addition of new modules. 
Third, in some cases, functional performance of each module 
is highly dependent on the architecture. For these reasons, 
there have been many related research activities so far such as 
[1][2][3][4][5] [6].  

Kim et al. [7] proposed the Tripodal schematic control 
architecture for the autonomous service robot PSR. The 
developed control architecture was shown to be a successful 
framework as verified from the transportation experiments. It 
provided a good solution to several architectural issues such as 
information connectivity between a variety of modules, 
scheduling of information processing, and combination of 
reactivity and deliberation. 

Although transportation tasks are performed successfully 
with the Tripodal architecture, we realize necessity of 
extending the capabilities of our systems. Our viewpoint is 
that the robotic system in daily life should be totally different 
from the conventional industrial automation problem. The 
mobile robotic agent should be a multi-functional servant, who 
can maximally utilize its capability towards various 
applications. Our major target is to achieve a transportation, a 
patrol, a guide and a floor cleaning tasks using one robot.  

According to the increase of the application domains, the 
hardware configurations as well as software algorithms are 
more complex and more accumulating. 

Three versions of the PSR have been built, and each of 
them has its own hardware configuration which has quite 
different physical properties each other. For example, PSR-1 
has a holonomic omni-directional mobile base, a six 
degree-of-freedom manipulator, a three fingered robot hand, 
and a reconfigurable trailer system. On the other hand, the  

 

Jinny, the newly-built guide robot, has two-wheel differential 
drive, two arms and 2-DOF neck system for expression of the 
robot’s feelings. The PSR robots also has a variety of sensors, 
which include encoders, two laser scanners, infra-red and 
ultrasonic sensors, optical fiber gyros, and force/torque 
sensors of the hand, potentiometers for measuring trailer 
orientation, eve-in-hand vision system for object manipulation, 
trailer-docking vision system, and stereo-vision cameras. We 
clearly show these diverse hardware modules are incorporated 
into stable systems with a proposed control architecture 
approach. 

The architecture deals with a wide spectrum of algorithms, 
which includes from dozens of reactive motion generating 
behaviors like a compliance controller for opening door and an 
obstacle-free optimal mobile tracker to several 
time-consuming algorithms such as localizers, real-time map 
constructors, and path planners. Moreover, it is required that 
the architecture should deal with intelligent planning and 
human robot in order to carry out a guide task.  

In this paper, we show practical advantages of the proposed 
architecture by giving examples of our experience. First, we 
explain how to add new cleaning task using Tripodal 
architecture approach step-by-step. The Tripodal architecture 
provides some crucial organizing principles and core 
components that are used to build the basis for the system. 
Thus, the newly developed behaviors, motion algorithm, 
knowledge, and planning schemes can be systematically 
integrated without loss of generality. Second, we describe the 
reusability and scaleability of our architecture. Most of 
modules developed for PSR-1 and PSR-2 systems are used 
directly to the Jinny system without significant modification. 
Only some hardware-related components are changed 
one-to-one without mal-effect to other modules. 

After the brief description of the Tripodal schematic 
architecture in Chapter 2, the extensibility of the architecture 
is shown in Chapter 3 through the process of addition of new 
PSR’s functional ability. The reusability of the architecture is 
proved by porting process from the existing control program 
to the newly-developed platform in Chapter 4. Chapter 5 
illustrates the results of experiments in order to show the 
efficiency of the Tripodal architecture. Finally some 
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concluding remarks are given in Chapter 6. 
 

2. OVERVIEW OF TRIPODAL SCHEMATIC 
CONTROL ARCHITECTURE 

 
Tripodal schematic design, as shown in Fig.1, is defined as 

the architecture of the PSR.  

 
 Fig.1. The overview of Tripodal schematic control 

architecture  
 
(1) The layered functionality diagram is a conceptual 

diagram for arranging various software modules and functions. 
It also shows the connectivity and the information flow 
between components. 

(2) The class diagram is designed for implementing various 
types of hardware, software, and functional modules in order 
to achieve modularity and reusability. It represents 
instantiation and hierarchy relation between components. 

(3) The configuration diagram represents Petri nets based 
configuration design for the planning part of a robot. As 
described before, the proposed architecture has two types of 
the configuration, high-level configuration and low-level 
configuration, according to the level of layers. .  

The detailed description of whole control architecture of 
PSR is introduced in [7]. 

 
3. ADDING A NEW CLEANING TASK 

 
3.1 Task decomposition using Configuration diagram 

In our architecture, the objective functions of the robot are 
divided into three levels, a task, a process, and a behavior. The 
task given by a user is a job which should be autonomously 
performed by the robot. It includes a transportation, a patrol, a 
guide and a floor cleaning tasks, in our applications. It is given 
in form of quite simple command like “Clean the room 3211” 
or “carry the document box from room 2111 to 2133.”  

The task is carried out by combination of internal processes 
generated by the planner. The internal process is defined as a 
job which is performed by configuring reactive components. 
The result of the process is definitely divided into success or 
failure in order to ensure the initial plan is achievable.  

Each internal process encapsulates a set of behaviors and 
related parameters. The behavior is a primitive action that can 
be executed in very short time.  

The planning, the decomposition between the tasks, the 
processes, and the behaviors, is carried out by referring to 
configuration. In our architecture, the configuration specifies 
not only the relation among them but also parameters 
necessary for their execution. The proposed architecture has 

two types of the configuration, high-level configuration and 
low-level configuration, according to the level of layers. With 
high-level configuration, a task is planned by connecting 
process modules in series or parallel with respect to one task. 
The process module encapsulates one process, fault recovery 
logics, and all necessary information. An internal process is 
decomposed into the network of behaviors with low-level 
configuration. The configuration is implemented by means of 
the Petri-net based configuration diagram. Petri nets are 
advantageous for the design of configurations for several 
reasons [7].  

The newly added cleaning task is designed to be performed 
as follows. First, the workspace is split into several sections. 
Then, each section is swept by the process PrCleaning, and 
move to the nearest uncleaned section by the process 
PrAutoMove, which is our fundamental navigation strategy. 
These two processes iterate alternately until the whole 
workspace is covered. 

The process PrCleaning is a robust full coverage algorithm 
using a wall-following technique. The process PrAutoMove 
navigates to the desired position with shortest collision-free 
path considering several kinds of errors frequently occurred in 
real applications. The process PrAutoMove is already 
implemented for the former transportation task, the process 
PrCleaning is newly developed.  

Fig.2 and Table 1 shows the Petri net model of the process 
module of Prcleaning implemented in high-level 
configuration. If the process ends up successfully, the token is 
assigned to the P3 in Fig.2, the next process module starts. If 
the process fails, the planner reorganizes the existing list of 
process modules. In the model of PrCleaning, the localization 
fault is considered. If the robot loses its way, the full coverage 
of the selected area cannot be guaranteed. Therefore, if it 
occurs, the planner inserts the global localization process in 
order to find out where it is.  

 

 
Fig.2. Petri net model of process module for PrCleaning 

 
Table 1 Description of places and transition of Fig. 2 

 Description 
P0 Standby 
P1 Executing the process PrCleaning 
P2 Completing the process PrCleaning 
P3 Fault: The full coverage is failed due to localization 

fault 
t0 Planner starts the process PrAutomove 
t1 Planner completes the process PrAutomove 
t2 Process supervisor (PS) posts fault message 

“localization fault”  
 

Fig.3 and Table 2 describes the Petri net model of the 
process PrCleaning in low-level configuration. Since the RSR 
systems processes two types of wheel mechanisms, cleaning 
behaviors for both are implemented. Thus, one of the 
BhCleaning and BhCleaningTwoWheel is activated according 
to the parameter encapsulated in the process. If the error event 
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is transmitted from the localizer, the robot stops moving until 
the success sign is triggered. If the error state is not temporary, 
the token is moved to the fault place. Then the failure of the 
process is reported to the planner. The Petri net models and 
descriptions of the PrAutoMove for the high-level and 
low-level configurations are shown in [7]. 

 
Fig.3. Petri net model of process PrCleaning 

 
Table 2 Description of places and transition of Fig. 3 
 Description 

P0 Idle (Standby) 
P1 (P2) Execute behavior BhCleaning (BhCleaning- 

TwoWheel) 
P3 State: Normal localization (Localizer updates a 

robot position periodically.) 
P4 State: Abnormal localization (Localizer doesn’t 

updates a robot position, and robot navigates only 
by using odometry) 

P5 (P7) Completion of given Process 
P6 Fault: behavior BhCleaning is failed due to 

localization fault 
P8 Fault: behavior BhCleaningTwoWheel is failed 

due to localization fault 
t0 (t1) Start behavior BhCleaning (BhCleaning- 

TwoWheel) 
t2 Localizer finds out the estimated position is 

accord with the actual robot position. 
t3 Localizer finds out the estimated position is not 

accord with the actual robot position. 
t4 (t6) Behavior BhCleaning (BhCleaningTwoWheel) 

completed successfully 
t5 (t7) PS terminates the behavior BhCleaning 

(BhCleaningTwoWheel) due to the failure of 
localization 

 
3.2 Component arrangement using Layered functionality 
diagram  

 
The layered functionality diagram is a conceptual diagram 

for arranging various software modules and functions. As 
shown in Fig.4, The layered functionality diagram is 
composed of three layers, which are deliberate layer, 
sequencing layer and reactive layer, based on hybrid approach. 

The deliberate layer has the function of interfacing with a 
user and executing planning process. The reactive layer 
consists of hardware-related modules for sensors and actuators 
and behaviors, the control command generator in real-time. 
The sequencing layer is charge of execution of the internal 
process sent from the deliberate layer by supervising the 
components in the reactive layer. It also has the algorithms 

assists the planning process or extracts highly advanced 
information from raw sensor data.  

 
Fig.4. Layered functionality diagram 

 
The planner, the process supervisor, configurations, and 

the behavior coordinator in Fig.4 are core components that are 
used to build the basis for our architecture. Therefore, it is not 
able to add or remove these modules. The other parts can be 
added, removed, or replaced for better performance.  

 
Fig.5. Guideline for arrangement of modules in Layered 

functionality diagram 
 
When a newly developed module is integrated in our 

architecture, it should be determined the location in the 
layered functionality diagram at first. Fig. 5 shows the 
guideline for this arrangement problem. Then, the input and 
output relations with other modules should be defined. It 
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means we specify which types of information is necessary and 
where and how to get the information. 

In order to implement the cleaning task the section splitter 
and two cleaning behaviors, BhCleaning and 
BhCleaningTwoWheel are newly developed. The section 
splitter provides the planner with the information about how 
to generate the sequence of the process PrCleaning, and 
PrAutoMove. According to Fig.5, it can be easily found out 
the section splitter should be placed in the navigation module. 
Also, BhCleaning and BhCleaningTwoWheel are sorted as the 
behavior naturally. 

After placing new modules in appropriate positions, input 
and output relations between new modules and the other one 
should be defined.  

The section splitter takes charge of dividing the workspace 
into several sections if it is a too large open space. The 
sectioning is more favorable since the performances of sensing 
and localization fall off in a large open space. The section 
splitter loads the local grid map of the workspace from maps 
firstly. The local grid map represents environments by 
evenly-spaced grid cells. The division criterion is the existence 
of isolated obstacles, which is not connected to the wall but 
located in the middle of free space. The section splitter scans 
the matrix of the local map row by row. If it detects the grid 
value representing the obstacle in a row, it saves the number 
of row. Then, it searches the number of row which has no 
obstacle gird. The section splitter set the virtual wall in the 
middle of them along the row.  

After completing the scanning process of whole workspace, 
the section splitter generates the section set, and reports it with 
the current position gotten from the localizers. Then, the 
planner with high-level configuration generates process lists 
based on this section set. Fig. 6 shows the input and output 
relations between the section splitter and other modules 

 

 
Fig.6. Input and output relations between the section splitter 

and other modules 
 
The developed cleaning behaviors, BhCleaning and 

BhCleaningTwoWheel, have same coverage algorithm which 
is based on the wall-following method. The robot sets the 
virtual balloon, and moves with keeping it tangent to the wall. 
These methods guarantees the robot smoothly moves keeping 
fixed distance with the wall. If the robot makes a round, the 
radius of the virtual wall is increased. Thus, the robot can fully 
covers the assigned workspace by repeating this step. Our 
algorithm is developed in order to minimize the number of 
times of turning and total moving distance. If the robot turns 
too often, the cleaning time grows longer due to frequent 

occurrence of acceleration and deacceleration. The total 
moving distance should be also reduced in order to decrease 
the cleaning time and energy consumption. Through the 
thorough simulations, it is proved that our approach is superior 
to other existing algorithms like distance transform and 
plowing method. Another advantage of our algorithm is robust 
ness with respect to the odometry error, since the algorithm 
generate velocity commands based on raw sensing data in 
every sampling time.  

As shown in Fig. 7, the behavior initially opens the part of 
local grid map of section assigned to a single process. In some 
case, the behavior also takes some process-related parameters 
such as the position of the virtual wall from the process 
supervisor. In every sampling time, the robot receives the 
current position from the localizers and raw laser data from 
the laser resources, and sends Mobile commands to the 
behavior coordinator. When the robot performs cleaning by 
navigation, the behavior records the cleaned position on the 
loaded grid map. After the assigned workspace is fully 
covered, the behavior reports the completion of the given job.  

 

 
Fig.7. Input and output relations between the cleaning 

behavior and other modules 
 

3.3 Implementation using Class diagram  

 
Fig.8. Class diagram 

 
The class diagram is designed in order to implement 

various types of hardware, software, and functional modules 
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for modularity and reusability. It represents instantiation and 
hierarchy relation between components. 

The class diagram is defined with two practical reasons. 
First, the structure of the PSR control program is so complex 
that it contains about 500 classes. Second, it is necessary that 
several developers can easily modify or add their components 
without affecting other modules. Thus, the class diagram is 
designed to makes it easy to describe the structure of software 
architecture understandably. 

The software architecture is coded in C++ using an 
object-oriented approach. Class diagram resembles the layered 
functionality diagram since each component of the layered 
functionality diagram is implemented as a class. The section 
splitter is encapsulised in a CSectionSplitter. It is initiated by 
CNaviModules and interface with other modules through 
CNaviModules.  

Class diagram also specifies class inheritance hierarchy for 
reusability and consistency. For example, all behaviors 
designed in our architecture should be inherited from 
CBehavior. It defines all common properties and requirements 
of behaviors, thus developers can make a new behavior 
through simple modification of some derived functions.  

 
4. IMPLEMENTING TRIPODAL CONTROL 

ARCHITECTURE INTO A NEW GUIDE ROBOT 
PLATFORM 

4.1 Hardware-dependent modules  
In this section, we describe the reusability and scaleability 

of our architecture by introducing the Jinny system, the 
newly-built guide robot. The change of mobile hardware 
configuration is remarkable in Jinny system. The PSRs has 
holonomic omni-directional mechanisms, but on the other 
hand, the Jinny is equipped with a two wheel differential 
mobile base. Moreover, cheaper servo controller is adopted for 
reducing fabricating cost. 

 

 
Fig.9. Data flow in reactive layer 

 
Fig.9 shows the structure of the reactive layer in our 

architecture. Initially, the behaviors generate the control 
command by using raw sensor data from the Resources or 
refined data from the navigation module. The Resources 
provide drivers for different kinds of sensor hardware and 
framework for efficient fusion of theses data. The resource is 
the start point of information flow. Then, the behavior 
coordinator fuses the control commands from one or more 
behaviors and sends them to the controller.  The controller 
transmits the commands to the hardware motion board every 
sampling time. This control loop performs very quickly in real 
time. Several control loops can exist according to the number 
of the controllers in a single system.  

As the Jinny system is developed, because of the Generality 
and scaleability of this structure of the reactive layer, only 

hardware-related modules such as the controller has changed, 
but most of them developed for the PSR-1 and the PSR-2 are 
reused directly. Additionally, sampling time of the control 
loop, which is closely dependent on the hardware properties, is 
changed for the new system. 

 
4.2 Human Robot Interface (HRI) 

Since the new target system is the guide robot Jinny, we 
place more weight on the HRI. The HRI interfaces with a user 
by receiving a task command and displaying the internal states 
of a robot.  

The inputs to the HRI are classified into two types, a 
reaction input and a command input. The reaction input means 
the user’s request which can be archived by the HRI alone. It 
includes simple dialogs such as “Introduce yourself.” or 
“How’s weather today?” The command input is the user’s 
order which should be performed by the planning process. It 
means the command input can not be completed without helps 
of other components and algorithms.  

To handle the reaction input, the HRI should have its own 
intelligence. The Robot Knowledge Management System 
(RKMS) undertakes this role. It specifies the connection 
between reaction inputs and proper response scenarios. That is, 
it extracts some key words from the inputs through receptive 
elements in Table 3. Then, it searches the results with the 
highest similarity in its knowledge base. It also applies to the 
recognition of natural language.  

The RKMS has a user-friendly GUI interface and uses 
widely-known web authoring language XML so that 
developers can easily extend robot’s knowledge. Moreover, it 
can be administrated in a remote site since it is implemented 
as a web server. 

Table 3 describes the interaction element of the HRI in 
Jinny system.  

 
Table 3 The interaction elements of the HRI in Jinny system 

- Voice recognition 
- Touch screen 

Receptive 
elements 

- 12 LED buttons 
- Voice synthesizer 
- Screen (displays animated agents, pictures, 

and videos) 

Expressive 
elements 

- Gestures (using mobile base, 2-DOF neck 
system, and two 1-DOF arm system) 

 
5. EXPERIMENTS AND RESULTS 

5.1 Cleaning experiments  

 
Fig.10. The map of a workspace for cleaning experiments 
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Fig.11. The results of coverage of Section D 

 
The developed cleaning task is implemented and tested on 

the PSR-2 platform. Fig. 10 shows the map of a workspace 
whose size is about 10m × 32m. As described before, the 
workspace is split into four sections and virtual walls are set in 
order to perform cleaning by wall following algorithm. 
Therefore, four times of PrCleaning and several times of 
PrAutoMove are necessary to complete a cleaning task of the 
given workspace. The number of execution of PrAutoMove 
and the order of these processes are changed according to the 
robot’s initial position.  

The results of coverage of section D is also presented in 
Fig.11. Fig.12 shows the PSR-2 in cleaning experiments.  

 

 
Fig.12. PSR-2 in cleaning experiments 

 
5.2 The guide robot Jinny   

The Tripodal schematic control architecture is successfully 
implemented into the new developed guide robot Jinny. The 
Jinny is demonstrated at the 2003 Korea Science Festival 
from August 13th to 21st as shown in Fig.13. During this 
exhibit, the Jinny is tested in a real environment over and 
over, and analyzed its interaction with visitors.  

 

 
Fig.13. The guide robot Jinny and the map of an environment 

 
Fig.13 shows the map of the environment at Science 

Festival exhibit hall. The Jinny moves between node 0 and 
node 1 while introducing itself and explaining other 

displayed robots. Although there are a couple of persons in 
the environments, the Jinny can navigate without collision as 
like the PSR-1 and the PSR-2.  

The Jinny performs several interesting service jobs in 
response to the user’s request. For example, it plays a simple 
game with visitors, and dances to the music. Also, it can 
provide the information about today’s weather and stock 
quotations to the visitors through the internet. 

 
6. CONCLUSION 

This paper addressed our experience about the development 
of PSR and Jinny systems with the Tripodal schematic control 
architecture. In this paper, we showed practical advantages of 
the proposed architecture by giving examples. First, we 
explained how to add new cleaning task using Tripodal 
architecture approach step-by-step. Then, we introduced the 
implementation of the guide robot Jinny for the reusability and 
scaleability of our architecture. 

Though the hardware configurations as well as software 
algorithms are more complex and more accumulating, the 
Tripodal schematic control architecture successfully managed 
it. Experimental results clearly showed that the developed 
strategy is useful for extending robot’s ability and developing 
new platform.  

Although not reported in this paper, some service tasks are 
also successfully implemented. A backward tracking task with 
multiple trailers is also accomplished. This task is quite 
complex job since several many control algorithms are 
necessary and hardware configurations are quite different.  
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