

1. INTRODUCTION

Three versions of the PSR (Public Service Robot) systems
are under development towards indoor public services at the
KIST (Korea Institute of Science and Technology).
Well-defined control architecture is essential to implement
complex robot systems like PSR systems for several reasons.
First, control architecture integrates different kinds of
hardware and software modules. Second, the architecture
plays an important role on maintenance problems such as
revision of existing components and addition of new modules.
Third, in some cases, functional performance of each module
is highly dependent on the architecture. For these reasons,
there have been many related research activities so far such as
[1][2][3][4][5] [6].

Kim et al. [7] proposed the Tripodal schematic control
architecture for the autonomous service robot PSR. The
developed control architecture was shown to be a successful
framework as verified from the transportation experiments. It
provided a good solution to several architectural issues such as
information connectivity between a variety of modules,
scheduling of information processing, and combination of
reactivity and deliberation.

Although transportation tasks are performed successfully
with the Tripodal architecture, we realize necessity of
extending the capabilities of our systems. Our viewpoint is
that the robotic system in daily life should be totally different
from the conventional industrial automation problem. The
mobile robotic agent should be a multi-functional servant, who
can maximally utilize its capability towards various
applications. Our major target is to achieve a transportation, a
patrol, a guide and a floor cleaning tasks using one robot.

According to the increase of the application domains, the
hardware configurations as well as software algorithms are
more complex and more accumulating.

Three versions of the PSR have been built, and each of
them has its own hardware configuration which has quite
different physical properties each other. For example, PSR-1
has a holonomic omni-directional mobile base, a six
degree-of-freedom manipulator, a three fingered robot hand,
and a reconfigurable trailer system. On the other hand, the

Jinny, the newly-built guide robot, has two-wheel differential
drive, two arms and 2-DOF neck system for expression of the
robot’s feelings. The PSR robots also has a variety of sensors,
which include encoders, two laser scanners, infra-red and
ultrasonic sensors, optical fiber gyros, and force/torque
sensors of the hand, potentiometers for measuring trailer
orientation, eve-in-hand vision system for object manipulation,
trailer-docking vision system, and stereo-vision cameras. We
clearly show these diverse hardware modules are incorporated
into stable systems with a proposed control architecture
approach.

The architecture deals with a wide spectrum of algorithms,
which includes from dozens of reactive motion generating
behaviors like a compliance controller for opening door and an
obstacle-free optimal mobile tracker to several
time-consuming algorithms such as localizers, real-time map
constructors, and path planners. Moreover, it is required that
the architecture should deal with intelligent planning and
human robot in order to carry out a guide task.

In this paper, we show practical advantages of the proposed
architecture by giving examples of our experience. First, we
explain how to add new cleaning task using Tripodal
architecture approach step-by-step. The Tripodal architecture
provides some crucial organizing principles and core
components that are used to build the basis for the system.
Thus, the newly developed behaviors, motion algorithm,
knowledge, and planning schemes can be systematically
integrated without loss of generality. Second, we describe the
reusability and scaleability of our architecture. Most of
modules developed for PSR-1 and PSR-2 systems are used
directly to the Jinny system without significant modification.
Only some hardware-related components are changed
one-to-one without mal-effect to other modules.

After the brief description of the Tripodal schematic
architecture in Chapter 2, the extensibility of the architecture
is shown in Chapter 3 through the process of addition of new
PSR’s functional ability. The reusability of the architecture is
proved by porting process from the existing control program
to the newly-developed platform in Chapter 4. Chapter 5
illustrates the results of experiments in order to show the
efficiency of the Tripodal architecture. Finally some

Design and Implementation of Tripodal Schematic Control Architecture for

Multi-Functional Service Robots

 Gunhee Kim, Woojin Chung, Munsang Kim, Chongwon Lee
Advanced Robotics Research Center, Korea Institute of Science and Technology,

39-1 Hawolgok-dong, Sungbuk-ku, Seoul, 136-791, Korea
(Tel : +82-2-958-6743; E-mail: {knir38, wjchung, munsang, cwlee}@kist.re.kr)

Abstract: This paper describes the development of service robotic systems with the Tripodal schematic control architecture. We
show practical advantages of the proposed architecture by giving examples of our experience. First, we explain how to add new
task using Tripodal architecture approach. The Tripodal architecture provides some crucial organizing principles and core
components that are used to build the basis for the system. Thus, the newly developed behaviors, motion algorithm, knowledge,
and planning schemes are arranged so as to guarantee the efficiency of the performance of components. Second, we describe the
reusability and scaleability of our architecture by introducing the implementation process of the guide robot Jinny. Most of
modules developed for former robots like PSR-1 and PSR-2 systems are used directly to the Jinny system without significant
modification. Experimental results clearly showed that the developed strategy is useful, even if the hardware configurations as well
as software algorithms are more complex and more accumulating.

Keywords: Control architecture, Service robots, Petri nets

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

concluding remarks are given in Chapter 6.

2. OVERVIEW OF TRIPODAL SCHEMATIC
CONTROL ARCHITECTURE

Tripodal schematic design, as shown in Fig.1, is defined as

the architecture of the PSR.

 Fig.1. The overview of Tripodal schematic control

architecture

(1) The layered functionality diagram is a conceptual

diagram for arranging various software modules and functions.
It also shows the connectivity and the information flow
between components.

(2) The class diagram is designed for implementing various
types of hardware, software, and functional modules in order
to achieve modularity and reusability. It represents
instantiation and hierarchy relation between components.

(3) The configuration diagram represents Petri nets based
configuration design for the planning part of a robot. As
described before, the proposed architecture has two types of
the configuration, high-level configuration and low-level
configuration, according to the level of layers. .

The detailed description of whole control architecture of
PSR is introduced in [7].

3. ADDING A NEW CLEANING TASK

3.1 Task decomposition using Configuration diagram

In our architecture, the objective functions of the robot are
divided into three levels, a task, a process, and a behavior. The
task given by a user is a job which should be autonomously
performed by the robot. It includes a transportation, a patrol, a
guide and a floor cleaning tasks, in our applications. It is given
in form of quite simple command like “Clean the room 3211”
or “carry the document box from room 2111 to 2133.”

The task is carried out by combination of internal processes
generated by the planner. The internal process is defined as a
job which is performed by configuring reactive components.
The result of the process is definitely divided into success or
failure in order to ensure the initial plan is achievable.

Each internal process encapsulates a set of behaviors and
related parameters. The behavior is a primitive action that can
be executed in very short time.

The planning, the decomposition between the tasks, the
processes, and the behaviors, is carried out by referring to
configuration. In our architecture, the configuration specifies
not only the relation among them but also parameters
necessary for their execution. The proposed architecture has

two types of the configuration, high-level configuration and
low-level configuration, according to the level of layers. With
high-level configuration, a task is planned by connecting
process modules in series or parallel with respect to one task.
The process module encapsulates one process, fault recovery
logics, and all necessary information. An internal process is
decomposed into the network of behaviors with low-level
configuration. The configuration is implemented by means of
the Petri-net based configuration diagram. Petri nets are
advantageous for the design of configurations for several
reasons [7].

The newly added cleaning task is designed to be performed
as follows. First, the workspace is split into several sections.
Then, each section is swept by the process PrCleaning, and
move to the nearest uncleaned section by the process
PrAutoMove, which is our fundamental navigation strategy.
These two processes iterate alternately until the whole
workspace is covered.

The process PrCleaning is a robust full coverage algorithm
using a wall-following technique. The process PrAutoMove
navigates to the desired position with shortest collision-free
path considering several kinds of errors frequently occurred in
real applications. The process PrAutoMove is already
implemented for the former transportation task, the process
PrCleaning is newly developed.

Fig.2 and Table 1 shows the Petri net model of the process
module of Prcleaning implemented in high-level
configuration. If the process ends up successfully, the token is
assigned to the P3 in Fig.2, the next process module starts. If
the process fails, the planner reorganizes the existing list of
process modules. In the model of PrCleaning, the localization
fault is considered. If the robot loses its way, the full coverage
of the selected area cannot be guaranteed. Therefore, if it
occurs, the planner inserts the global localization process in
order to find out where it is.

Fig.2. Petri net model of process module for PrCleaning

Table 1 Description of places and transition of Fig. 2

 Description
P0 Standby
P1 Executing the process PrCleaning
P2 Completing the process PrCleaning
P3 Fault: The full coverage is failed due to localization

fault
t0 Planner starts the process PrAutomove
t1 Planner completes the process PrAutomove
t2 Process supervisor (PS) posts fault message

“localization fault”

Fig.3 and Table 2 describes the Petri net model of the
process PrCleaning in low-level configuration. Since the RSR
systems processes two types of wheel mechanisms, cleaning
behaviors for both are implemented. Thus, one of the
BhCleaning and BhCleaningTwoWheel is activated according
to the parameter encapsulated in the process. If the error event

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

is transmitted from the localizer, the robot stops moving until
the success sign is triggered. If the error state is not temporary,
the token is moved to the fault place. Then the failure of the
process is reported to the planner. The Petri net models and
descriptions of the PrAutoMove for the high-level and
low-level configurations are shown in [7].

Fig.3. Petri net model of process PrCleaning

Table 2 Description of places and transition of Fig. 3
 Description

P0 Idle (Standby)
P1 (P2) Execute behavior BhCleaning (BhCleaning-

TwoWheel)
P3 State: Normal localization (Localizer updates a

robot position periodically.)
P4 State: Abnormal localization (Localizer doesn’t

updates a robot position, and robot navigates only
by using odometry)

P5 (P7) Completion of given Process
P6 Fault: behavior BhCleaning is failed due to

localization fault
P8 Fault: behavior BhCleaningTwoWheel is failed

due to localization fault
t0 (t1) Start behavior BhCleaning (BhCleaning-

TwoWheel)
t2 Localizer finds out the estimated position is

accord with the actual robot position.
t3 Localizer finds out the estimated position is not

accord with the actual robot position.
t4 (t6) Behavior BhCleaning (BhCleaningTwoWheel)

completed successfully
t5 (t7) PS terminates the behavior BhCleaning

(BhCleaningTwoWheel) due to the failure of
localization

3.2 Component arrangement using Layered functionality
diagram

The layered functionality diagram is a conceptual diagram

for arranging various software modules and functions. As
shown in Fig.4, The layered functionality diagram is
composed of three layers, which are deliberate layer,
sequencing layer and reactive layer, based on hybrid approach.

The deliberate layer has the function of interfacing with a
user and executing planning process. The reactive layer
consists of hardware-related modules for sensors and actuators
and behaviors, the control command generator in real-time.
The sequencing layer is charge of execution of the internal
process sent from the deliberate layer by supervising the
components in the reactive layer. It also has the algorithms

assists the planning process or extracts highly advanced
information from raw sensor data.

Fig.4. Layered functionality diagram

The planner, the process supervisor, configurations, and

the behavior coordinator in Fig.4 are core components that are
used to build the basis for our architecture. Therefore, it is not
able to add or remove these modules. The other parts can be
added, removed, or replaced for better performance.

Fig.5. Guideline for arrangement of modules in Layered

functionality diagram

When a newly developed module is integrated in our

architecture, it should be determined the location in the
layered functionality diagram at first. Fig. 5 shows the
guideline for this arrangement problem. Then, the input and
output relations with other modules should be defined. It

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

means we specify which types of information is necessary and
where and how to get the information.

In order to implement the cleaning task the section splitter
and two cleaning behaviors, BhCleaning and
BhCleaningTwoWheel are newly developed. The section
splitter provides the planner with the information about how
to generate the sequence of the process PrCleaning, and
PrAutoMove. According to Fig.5, it can be easily found out
the section splitter should be placed in the navigation module.
Also, BhCleaning and BhCleaningTwoWheel are sorted as the
behavior naturally.

After placing new modules in appropriate positions, input
and output relations between new modules and the other one
should be defined.

The section splitter takes charge of dividing the workspace
into several sections if it is a too large open space. The
sectioning is more favorable since the performances of sensing
and localization fall off in a large open space. The section
splitter loads the local grid map of the workspace from maps
firstly. The local grid map represents environments by
evenly-spaced grid cells. The division criterion is the existence
of isolated obstacles, which is not connected to the wall but
located in the middle of free space. The section splitter scans
the matrix of the local map row by row. If it detects the grid
value representing the obstacle in a row, it saves the number
of row. Then, it searches the number of row which has no
obstacle gird. The section splitter set the virtual wall in the
middle of them along the row.

After completing the scanning process of whole workspace,
the section splitter generates the section set, and reports it with
the current position gotten from the localizers. Then, the
planner with high-level configuration generates process lists
based on this section set. Fig. 6 shows the input and output
relations between the section splitter and other modules

Fig.6. Input and output relations between the section splitter

and other modules

The developed cleaning behaviors, BhCleaning and

BhCleaningTwoWheel, have same coverage algorithm which
is based on the wall-following method. The robot sets the
virtual balloon, and moves with keeping it tangent to the wall.
These methods guarantees the robot smoothly moves keeping
fixed distance with the wall. If the robot makes a round, the
radius of the virtual wall is increased. Thus, the robot can fully
covers the assigned workspace by repeating this step. Our
algorithm is developed in order to minimize the number of
times of turning and total moving distance. If the robot turns
too often, the cleaning time grows longer due to frequent

occurrence of acceleration and deacceleration. The total
moving distance should be also reduced in order to decrease
the cleaning time and energy consumption. Through the
thorough simulations, it is proved that our approach is superior
to other existing algorithms like distance transform and
plowing method. Another advantage of our algorithm is robust
ness with respect to the odometry error, since the algorithm
generate velocity commands based on raw sensing data in
every sampling time.

As shown in Fig. 7, the behavior initially opens the part of
local grid map of section assigned to a single process. In some
case, the behavior also takes some process-related parameters
such as the position of the virtual wall from the process
supervisor. In every sampling time, the robot receives the
current position from the localizers and raw laser data from
the laser resources, and sends Mobile commands to the
behavior coordinator. When the robot performs cleaning by
navigation, the behavior records the cleaned position on the
loaded grid map. After the assigned workspace is fully
covered, the behavior reports the completion of the given job.

Fig.7. Input and output relations between the cleaning

behavior and other modules

3.3 Implementation using Class diagram

Fig.8. Class diagram

The class diagram is designed in order to implement

various types of hardware, software, and functional modules

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

for modularity and reusability. It represents instantiation and
hierarchy relation between components.

The class diagram is defined with two practical reasons.
First, the structure of the PSR control program is so complex
that it contains about 500 classes. Second, it is necessary that
several developers can easily modify or add their components
without affecting other modules. Thus, the class diagram is
designed to makes it easy to describe the structure of software
architecture understandably.

The software architecture is coded in C++ using an
object-oriented approach. Class diagram resembles the layered
functionality diagram since each component of the layered
functionality diagram is implemented as a class. The section
splitter is encapsulised in a CSectionSplitter. It is initiated by
CNaviModules and interface with other modules through
CNaviModules.

Class diagram also specifies class inheritance hierarchy for
reusability and consistency. For example, all behaviors
designed in our architecture should be inherited from
CBehavior. It defines all common properties and requirements
of behaviors, thus developers can make a new behavior
through simple modification of some derived functions.

4. IMPLEMENTING TRIPODAL CONTROL

ARCHITECTURE INTO A NEW GUIDE ROBOT
PLATFORM

4.1 Hardware-dependent modules
In this section, we describe the reusability and scaleability

of our architecture by introducing the Jinny system, the
newly-built guide robot. The change of mobile hardware
configuration is remarkable in Jinny system. The PSRs has
holonomic omni-directional mechanisms, but on the other
hand, the Jinny is equipped with a two wheel differential
mobile base. Moreover, cheaper servo controller is adopted for
reducing fabricating cost.

Fig.9. Data flow in reactive layer

Fig.9 shows the structure of the reactive layer in our

architecture. Initially, the behaviors generate the control
command by using raw sensor data from the Resources or
refined data from the navigation module. The Resources
provide drivers for different kinds of sensor hardware and
framework for efficient fusion of theses data. The resource is
the start point of information flow. Then, the behavior
coordinator fuses the control commands from one or more
behaviors and sends them to the controller. The controller
transmits the commands to the hardware motion board every
sampling time. This control loop performs very quickly in real
time. Several control loops can exist according to the number
of the controllers in a single system.

As the Jinny system is developed, because of the Generality
and scaleability of this structure of the reactive layer, only

hardware-related modules such as the controller has changed,
but most of them developed for the PSR-1 and the PSR-2 are
reused directly. Additionally, sampling time of the control
loop, which is closely dependent on the hardware properties, is
changed for the new system.

4.2 Human Robot Interface (HRI)

Since the new target system is the guide robot Jinny, we
place more weight on the HRI. The HRI interfaces with a user
by receiving a task command and displaying the internal states
of a robot.

The inputs to the HRI are classified into two types, a
reaction input and a command input. The reaction input means
the user’s request which can be archived by the HRI alone. It
includes simple dialogs such as “Introduce yourself.” or
“How’s weather today?” The command input is the user’s
order which should be performed by the planning process. It
means the command input can not be completed without helps
of other components and algorithms.

To handle the reaction input, the HRI should have its own
intelligence. The Robot Knowledge Management System
(RKMS) undertakes this role. It specifies the connection
between reaction inputs and proper response scenarios. That is,
it extracts some key words from the inputs through receptive
elements in Table 3. Then, it searches the results with the
highest similarity in its knowledge base. It also applies to the
recognition of natural language.

The RKMS has a user-friendly GUI interface and uses
widely-known web authoring language XML so that
developers can easily extend robot’s knowledge. Moreover, it
can be administrated in a remote site since it is implemented
as a web server.

Table 3 describes the interaction element of the HRI in
Jinny system.

Table 3 The interaction elements of the HRI in Jinny system

- Voice recognition
- Touch screen

Receptive
elements

- 12 LED buttons
- Voice synthesizer
- Screen (displays animated agents, pictures,

and videos)

Expressive
elements

- Gestures (using mobile base, 2-DOF neck
system, and two 1-DOF arm system)

5. EXPERIMENTS AND RESULTS

5.1 Cleaning experiments

Fig.10. The map of a workspace for cleaning experiments

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

Fig.11. The results of coverage of Section D

The developed cleaning task is implemented and tested on

the PSR-2 platform. Fig. 10 shows the map of a workspace
whose size is about 10m × 32m. As described before, the
workspace is split into four sections and virtual walls are set in
order to perform cleaning by wall following algorithm.
Therefore, four times of PrCleaning and several times of
PrAutoMove are necessary to complete a cleaning task of the
given workspace. The number of execution of PrAutoMove
and the order of these processes are changed according to the
robot’s initial position.

The results of coverage of section D is also presented in
Fig.11. Fig.12 shows the PSR-2 in cleaning experiments.

Fig.12. PSR-2 in cleaning experiments

5.2 The guide robot Jinny

The Tripodal schematic control architecture is successfully
implemented into the new developed guide robot Jinny. The
Jinny is demonstrated at the 2003 Korea Science Festival
from August 13th to 21st as shown in Fig.13. During this
exhibit, the Jinny is tested in a real environment over and
over, and analyzed its interaction with visitors.

Fig.13. The guide robot Jinny and the map of an environment

Fig.13 shows the map of the environment at Science

Festival exhibit hall. The Jinny moves between node 0 and
node 1 while introducing itself and explaining other

displayed robots. Although there are a couple of persons in
the environments, the Jinny can navigate without collision as
like the PSR-1 and the PSR-2.

The Jinny performs several interesting service jobs in
response to the user’s request. For example, it plays a simple
game with visitors, and dances to the music. Also, it can
provide the information about today’s weather and stock
quotations to the visitors through the internet.

6. CONCLUSION

This paper addressed our experience about the development
of PSR and Jinny systems with the Tripodal schematic control
architecture. In this paper, we showed practical advantages of
the proposed architecture by giving examples. First, we
explained how to add new cleaning task using Tripodal
architecture approach step-by-step. Then, we introduced the
implementation of the guide robot Jinny for the reusability and
scaleability of our architecture.

Though the hardware configurations as well as software
algorithms are more complex and more accumulating, the
Tripodal schematic control architecture successfully managed
it. Experimental results clearly showed that the developed
strategy is useful for extending robot’s ability and developing
new platform.

Although not reported in this paper, some service tasks are
also successfully implemented. A backward tracking task with
multiple trailers is also accomplished. This task is quite
complex job since several many control algorithms are
necessary and hardware configurations are quite different.

REFERENCES

[1] Erann Gat, Three-Layer Architectures in D. Kortenkamp

et al. eds. Artificial Intelligence and Mobile Robots,
AAAI Press, MA; 1998, pp.195.

[2] R. C. Arkin, Behavior-Based Robotics, The MIT Press,
MA; 1998, pp.214.

[3] Reid G. Simmons, “Structured Control for Autonomous
Robots,” IEEE Trans. on Robotics and Automation, vol.
10, no. 1, Feb. 1994, pp. 34-43.

[4] Sebastian Thrun, Maren Bennewitz, Wolfram Burgard,
Armin B. Cremers, Frank Dellaert, and Dieter Fox,
“MINERVA : A Second-Generation Museum
Tour-Guide Robot,” in Proceeding of the IEEE
Conference on Robotics and Automation, Detroit,
Michigan, USA, pp. 1999-2005, 1999.

[5] Fabrice R. Noreils and Raja G. Chatila, “Plan Execution
Monitoring and Control Architecture for Mobile
Robots,” IEEE Trans. on Robotics and Automation, vol.
11, no. 2, Apr. 1995, pp. 255-266.

[6] Mattias Lindstrom, Anders Oreback, and Henrik I.
Christensen, “BERRA : A Research Architecture for
Service Robots,” in Proceeding of the IEEE Conference
on Robotics and Automation, San Francisco, CA, USA,
pp. 3278-3283, 2000.

[7] Gunhee Kim, Woojin Chung, Munsang Kim, Chongwon
Lee, ¨Tripodal Schematic Design of the Control
Architecture for the Service Robot PSR,〃 in
Proceeding of the IEEE Conference on Robotics and
Automation, Taipei, Taiwan, 2002.

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2045
	page21: 2046
	page31: 2047
	page41: 2048
	page51: 2049
	page61: 2050

