
ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, KOREA

Dynamic Infrastructure for Personal Robot : DynI

S. G. Roh∗, K. H. Park∗, K. W. Yang∗∗, J, H, Park∗, H. S. Kim∗∗, H. G. Lee∗∗, and H. R. Choi∗

∗ School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea
∗∗ Korea Institute of Industrial Technology, Chonan, 330-825, Korea

Abstract: The advanced infrastructure for accelerating the development of personal robots is presented. Based on this structure,

effective ways for integrating the various commercial components and interfacing among them are studied. The infrastructure

includes the technology such as modularization based on independent processing and standardization open to other developers.

The infrastructure supports not only that each hardware component of a personal robot can be easily attached to and detached

from the whole system mechanically but also that each software of the components can be functionally distributed. As a result,

we developed the fully modularized personal robots mechanically, and a virtual machine for the control of these robots. In this

paper the proposed infrastructure and its implementations are described.

Keywords: Personal robot, Home Robot, Infrastructure, Modularization, Standardization, IEEE1394, Virtual Machine

1. Introduction
As the standard of human being’s living is elevated, the re-

search about personal robots, which appropriately coincides

with the improvement of IT (Information Technology) and

the realization of home automation, appears to be the world-

wide trend. This tendency has something to do with inte-

grated intelligent environments such as intelligent room [1],

intelligent space [2], and smart room [3], which originate in

ubiquitous computing of the third wave in computing [4].

These environments need the physical agent for interacting

with people, and personal robots can be considered as the

proper agent. The personal robot for interfacing between

people and the environments seems to require few sensors

and not to be smart because the robot is supported by the

environment with integrated intelligence. Consequently, the

personal robot technology will be influenced by and may be

dependent on the intelligent environments. On the other

hand, the research about the more advanced personal robot,

which has its own capability such as sensibility, mobility and

smart intelligence without the intelligent environments, is

still attractive area. This is because the personal robot will

be a new independent creature beyond mere devices which

a human being has designed to extend his life zone.

In concert with these changes, The Project of Basic Tech-

nology Development for Personal Robots was set about in

2002, Korea and it will be supported by Ministry of Com-

merce, Industry and Energy for ten years. The project, in

which scores of research groups in universities and compa-

nies participate, consists of five sub-projects: I) Develop-

ment of Entertainment and Game Robots, II) Development

of Control and Sensing Technology for Personal Robots, III)

Development of Information and Intelligence Technology for

Personal Robots, IV) Development of Mechanism and Core

Parts, and V) Development of System Engineering Technol-

ogy for Personal Robots.

The project is caused by the investigation that the paradigm

in the personal robot industry proceeds to the modular-based

Corresponding Author, Email : hrchoi@me.skku.ac.kr. This research is sup-

ported by The Project of Basic Technology Development for Personal Robots

of Ministry of Commerce, Industry and Energy in Korea.

development as shown in Fig. 1. The sub-project V in which

� � � � � � � � � � � 	
 � � � � � � 	
 � � � � �

� � � � �
 �

� � � � �
 �

� � � � � � �
 � � � � � � 	
 � � � � �

� � � � � � � � � � � � 	
 � � 	 � � �
 � � � 	 � � � � � � � � 	 � � � � � �

� � � � � � � � � � � 	 � � � � 	 �
 � � �
 � � 	 � � 	 � � � 	 � � � � � �

� � �
 � � � � � � 	
 � � 	 � � � � � � � � � � � � 	 � � � � � � 	 � 	 � � � � � � � � � �

� � � � �
 �

� � � � �
 �

� � �
 � �
 � � � � � � 	
 � � 	 � � � � � � 	 � � � � � � � � 	 � � � � � �

� � � � � � � � � � � 	 � � � � � � � � � � 	 � � � � 	 � � � �
 � � 	 	 � � 	 � � �

� � � � � �

� � �
 � � � � 	
 � � 	 � � � � � � � � � 	 � � � � � � 	 � 	 � � � � � � � � � �

Fig. 1. Change of Paradigm for Development of Personal

Robots

authors are involved is the study required for the integration

of the other sub-projects because the project composed of

the sub-projects covers the whole field of personal robot tech-

nology. With the study on the integration of the other sub-

projects, our goal is concerned with the fact that personal

robots should be able to registered as consumer products.

As a premise to achieve this goal, however, the fundamental

infrastructure in the related technologies such as standard-

ization and modularization is need.

In the previous work[5], we mainly introduced how to prepare

a consistent and systematic framework for the development

of personal robots, and described several issues related to

the proposed framework such as modular designs and con-

nections of hardware. With DHR I (Digital Home Robot I) of

our original personal robot platform composed of some mod-

ules, the framework was evaluated through the experiment

such as hot-plugging, the navigation using method pointing

vision images[16].

In the present study, we introduce an infrastructure named

‘DynI’ (Dynamic Infrastructure for personal robot). It

means not only software framework but also hardware frame-

work composed of some ‘Module-D’s (Module of DynI). It is

improved and materialized in caparison with the abstract

framework of the previous study. DynI which is breathed

into by our original ‘VM-D’ (Virtual Machine of DynI) sup-

ports that each hardware module of the personal robot can

be easily attached to and detached from the whole system

mechanically. It also presents a methodology so that each

software of the module can be functionally distributed. To

go into more details, it provides methods for the connection

between a higher and lower task. Based on this environment,

a software development is classified into some gradual lev-

els, so that the developers for lower-level-task can provide

the developers for the higher-level-task with the subordinate

device driver. This is because VM-D, which controls and

arbitrates Module-Ds, supports independency and portabil-

ity. Therefore, DynI can be concerned with the subject of

integration, or rather, it is a advanced infrastructure for ac-

celerating the development of personal robots. In the section

II, we present the idea and concept of DynI. The section III

describes VM-D and Module-D which are intimately associ-

ated with DynI in detail. In the section IV, we discuss the

present and future work, and concludes the paper.

2. DynI : Dynamic Infrastructure for personal
robot

This section illustrates two point of view about the proposed

infrastructure. One is the basic concept coping with the sit-

uation of the exiting framework or architecture of computa-

tional systems such as personal computers. The other is the

extended concept as the advanced infrastructure for acceler-

ating the development of personal robots.

2.1. Problem Statements and Basic Idea

Personal robots are frequently presented in the recent years.

Most of them have wheels[18], [19], [21], [22], [23]. To all

outward appearances, because they look like moving vehicles

such as cars though a few have often manipulators and legs,

the development of them can be seem to be simple. However,

it is not easy to develop them because personal robots require

high technologies such as navigation and intelligence. On the

other hand, the difficulty of developing them is due to the

fact that they should satisfy not specific demands but various

requirements from a lot of users as the terminology personal

implies.

In comparison with a personal computer, the characteris-

tic of the personal robot is similar to that of the personal

computer not only because both of them require the compu-

tational technology but also because the personal computer

should satisfy demands of multiform users. There, however,

are some difference between the two. Firstly, the personal

computer has already become widespread. The popularity of

it originated from its standardization based on compatibil-

ity and extendability. The standardization enables compa-

nies to develop it speedily though it requires the professional

and high-level technology. This means that the progress and

popularization of the personal robot on the whole also de-

pends on the standardization as described in Fig. 1. Sec-

ondly, a personal computer has the centralized control archi-

tecture which consists of CPU on a main board and func-

tional devices such as VGA card, sound card and monitor,

and allows time-delayed communication for the data trans-

mission among devices, whereas the personal robot has the

distributed and multi-processing framework such as OPEN-

R, OpenHRP, BERRRA, and PETER owning to requiring

heavy process[10], [11], [12], [13], [14]. These models rep-

resent considerable progress, and will be referred by other

developers. On the other hands, they have their own merits

which may be still far from standardization. For example,

AIBO of Sony copes with a flexible and adaptable platform

[10]. It chose OPEN-R as system architecture and modu-

lar components as mechanical hardware. The system layer

of AIBO handles the in-output of sound and vision, con-

trol joints of legs, etc., while application layer is for users.

In addition, the legs and head of the version ERS-210 are

compatible with those of ERS-220. AIBO is continuously

updated to new model type as platform based on OPEN-R,

but it is designed for a pet robot and still seems to be a

model for Sony products, not for other companies.

The proposed infrastructure is designed for effective integra-

tion of commercial and common products so that the ef-

fort of robotic companies are sufficient as only possessing

its own development capability for a certain module or de-

vices: camera, infrared sensor, mobile, joint, casing, etc. In

other words, it corresponds to the standardization for per-

sonal robots covering compatibility and modularization. Fig.

2 shows that the various Module-Ds (to be described in

the next section) are connected mechanically and electrically,

and integrated into some assemblies.

� � � � � � �

� 	
 � � �

� � � � 	 �

� � � � � �

Fig. 2. Integration of Module-D based on standardization

2.2. Advanced Concept

The proposed infrastructure supports the standardization

basically as well as that of personal computers. The stan-

dardization of the personal robot, however, has its own con-

stitution different from that of the personal computer. The

personal computer is operated passively by user’s instruc-

tions in static place, whereas personal robots should respond

to the surroundings such as obstacles, and should be able to

move actively from place to place without the command of

users. This technology of the personal robot is based on

the intelligence which requires sensing, localization, etc. In

other words, the personal robot should be not static but loco-

motive, and also adapt to the constantly changeable intelli-

gence technologies which requires various strategies and algo-

rithms difficult for generalization. These dynamical features

of personal robots enforce themselves to react real-timely for

speedy locomotion and to adapt itself to the new and vari-

ous artificial intelligence. DynI (Dynamic Infrastructure for

personal Robots) is planed on the basis of these concepts;

the terminology ‘Dynamic’ of DynI also has its origin in the

concept. In other words, DynI implies two meanings. One

is to support realtime control such as behavior-based con-

trol. The other is to have a adaptable construction such

as combination of its capability. Consequently, DynI is the

infrastructure for the alternative standardization of the per-

sonal robot which is different from the typical normalization

of the personal computer.

3. Construction of DynI
As a whole, two main elements support DynI. They enable

DynI to be the integration framework for the modular-based

standardization, and furthermore, make DynI the advanced

infrastructure for accelerating the development of personal

robots. They are VM-D (Virtual Machine of DynI) and

Module-D (Module of DynI). VM-D is mainly concerned

with software and becomes the fundamental element for

DynI. Module-D means the module of proposed robot which

is controlled and arbitrated by VM-D, and it accomplishes

DynI. In this section, VM-D and Module-D are presented in

detail.

3.1. VM-D : Virtual Machine of DynI

Virtual machine is a common technique to give portability to

the embedded systems incorporated with compilers or inter-

preters. In 1995, Sun Microsystems released Java technol-

ogy, Java language and Java virtual machine. They make

the software on Java environment run on different kinds

of OSs and hardwares installed Java virtual machine. The

technology has greatly influenced the development paradigm

of products. Though Java virtual machine provides a high

portability to a system when installed, it brings drawbacks

in the development time and execution performance when

used for developing robot modules distributed over network.

Since neither can Java have low-level commands for the hard-

ware control nor execute byte codes fast on its interpreter,

it is not suitable for the time-critical control systems like

robots which should be controlled in real-time. A new vir-

tual machine called VM-D (Virtual Machine of DynI) with

RPL (Robot Programming Language) is presented. It has

the same advantages like system-independency and portabil-

ity as Java virtual machine, its execution speed is improved

fast, and it provides the frequently used functions and algo-

rithms as the intrinsic functions in itself. The structure of

the standardized module interface and how to utilize VM-D

are also studied and implemented.

3.2. Configuration of VM-D

VM-D can be ported into different kinds of hardware plat-

forms and operating systems such as Microsoft’s Windows,

Linux and RTLinux. It is used for running the byte codes

of a control program on Module-D. Module-Ds can corre-

spond with each other through virtual ports, and the ports

are the communication channels of point-to-point connec-

tions. Actual port mapped for physical communication is

the FireWire IEEE1394. It can be applied to USB, RS-232C

and Ethernet with TCP/IP.

VM-D is stack-oriented. it takes one or more operands from

the operand stack of its current frame, and pushes the re-

sults back onto the operand stack. A new frame is created

each time a method is invoked, and the frame is created a

new operand stack and set of local variables for usage by the

method. VM-D is composed of register, memory and execu-

tor, and defines various runtime memory areas that are used

during the execution of a application program: byte code,

global variable, function pointer , stack and heap areas. The

� � � �

Fig. 3. Configuration of VM-D

structure of VM-D is shown in Fig. 3 and its constituents

are as follows:

•Register

VM-D has three 32-bit register (SP, BP, PC). They are used

for accessing a stack or contain the address of VM-D instruc-

tion which is currently executed. SP (Stack Pointer) holds

the address of the top element of a stack in memory. BP

(Base Pointer) holds the address of the base point of a stack

in memory. PC (Program Counter) contains the address of

the next byte code to be executed.

• Stack

Each task of VM-D has a private stack which created at

the same time as the task. The stack is analogous to that

of a conventional language such as C: it holds local vari-

ables and partial results, and passes parameters to methods

and receives method results. All instructions of VM-D take

operands from the operand stack, operate on them, and re-

turn the results to the stack.

• Heap

A heap is a runtime data area from which the memory for

all strings and arrays is allocated. The heap is created on

the start-up of VM-D .

• Byte Code Area

A byte code area is similar to the store for the compiled code

in conventional languages or text segment. It stores the byte

code and symbol tables.

• Global Variable Table

A global variable table is shared among all tasks of VM-D.

• Function Pointer Table

A function pointer table contains the address of a function

body.

• Instruction Set

An instruction called a byte code consists of a one-byte op-

code and operands. The one specifies the operation to be

performed. The other supplies parameters or data which will

be used by the operation. Instructions have no operands, or

have one or two opcode. The byte code instruction stream

is only byte-aligned. These decisions keep the code of VM-D

for the compiled program compacting

3.3. RPL : Robot Programming Language

To write the application program of personal robots, RPL

(Robot Programming Language) is presented. In other

words, VM-D is developed in order to control and arbitrate

each heterogeneous OS or Mini-OS, while RPL supports the

developers of the application program for personal robots on

the basis of the unification of various OSs with VM-D. It

is a programming language such as C++, FORTRAN and

PASCAL. The program written in RPL is compiled by RPL-

compiler to translate into the byte codes as shown in Fig. 4.

The byte codes are downloaded into Module-D through the

� � � � � � � � 	
 �

� � � � � � �
 � � � � � � �
 � � � � �

� � � � � �
 � � �
 � !

� � � � � �
 � � � � � � � � " � � � � #

$
 � � � � �
 	 � � � 	
 %
 & ' () � !
� � � * � �
 � � � � � � �
 +
 	 � � � 	 !

,

� � � � � �
 � � �
 � !

� � � � � �
 � � � � � � � � " � � � � #

$
 � � � � �
 	 � � � 	
 %
 & ' () � !
� � � * � �
 � � � � � +
 	 � � � 	 !

,

� � � � � �
 � � �
 � !

� � � � � �
 � � � � � � � � " � � � � #

$

� � � * � �
 � � � � � +
 ' () !
,

- � � � � � � � � .
/ / / /
 (0

 � 1 � 2
 � �
/ / / '
 3 4

 5 6 7
 � � �
 � �
/ / / (
 (8
 / / / / / / / / � 1 � 2 �
 & ' () �
/ / / 3
 (8
 / / / / / / / (� 1 � 2 �
 & � � � �
/ / / �
 � 9 � : :
/ / / :
 � / � ; �

� � � � � � � � 	
 � � � � � �

 � � � � � � � � � � �
 �

 � � � �
 �

� � � � � � � � � � � �
 � � � � � �

Fig. 4. RPL compile

ports, interpreted and executed on VM-D of Module-D.

DynI is the hardware and software environment and Module-

D based on DynI is the hardware and software plat-

form. To control Module-D, VM-D calls the function

of Module-D such as ‘mobile.goto(x, y)’ or the function

of components which constitutes Module-D such as ‘mo-

bile.readEncorder(motor1); the function is named the API

(Application Programming Interface). In other words, API

means the collection of low-level function or low-level func-

tion itself. As shown in Fig. 5, API and VM-D layer sep-

5 � � * 	 � < :

� � � � 	
 � �

� �

� � � � � � � � � � � � � � 	 � � �
 � � �

� � � � � � � �
 � � 	
 � � � � � � � � � � � � � � � �

� � � �
 � � � �

� � � � � � � � � � � �

� � � �

! � � �
 � � � � � � � " � 	
 � �

! # $

% # �

�
 & � � � � '
 � (�
 (�

�

� �
	

� �

� �
�
� �
� �
�
� �
�

�

��
	

��

�
��
��
�
��
�

Fig. 5. Software structure of Module-D

arate and insulate the application software from the hard-

ware dependencies. VM-D is the base for Module-D and

is ported onto various hardware. API is a large collection

of ready-made software functions that provide many useful

capabilities. Module-D programs such as navigation and im-

age processing are run on its own VM-D. Furthermore, one

Module-D can execute API of the other Module-Ds. The

variable of RPL has a data type. A data type of the variable

determines the values which the variable can contain and the

operations which can be performed on it. All of the primi-

tive data types which are integer, floating point, and string

are supported by RPL.

While compiling, a character in RPL source code is expressed

in continuous tokens. RPL compiler recognizes five types of

token: identifiers, keywords, literals, operators and miscella-

neous separators. White spaces (tab, carriage return and line

feed) and comments can serve to separate tokens. As shown

in Fig. 4, pre-processor and compiler pass four steps while

the source code compile into the byte code : pre-processing,

lexical analysis, parsing and link.

3.4. Module-D for Developer for Personal Robots

This subsection presents that the approach based on Module-

D of DynI offers new methodology to developers of various

fields such as design, construction, implementation, and evo-

lution of the personal robot application. The applications

can be assembled from Module-Ds with a variety of sources,

that is, Module-Ds themselves may be written in several dif-

ferent programming languages and run on several different

platforms. Nevertheless, Module-Ds can be reconfigured, re-

placed or reprogrammed, as long as they continue to provide

the same interface to the same level of quality. This gives

the considerable flexibility to the whole systems. Therefore,

Module-D supports the integrated environment and plat-

form so that companies should develop their low-level com-

ponents. It is realized and accomplished because Module-Ds

are controlled by VM-D. VM-D is applied to Module-D with

OS such as Windows and Linux. It is also based on the com-

ponents with its own controller which belongs to Module-D;

in this paper, the methodology by Module-D is presented for

simple description. Fig. 6 shows VM-D and public interfaces.

Each Module-D has its own property, method. The property

7 5 < :

5 � � = � �

� � � � � � � �

7 � � � * � 	
 � � � �

� � � �
 (

� � � �
 '

5 � � * 	 � < :
 '
5 � � * 	 � < :
 (

5 � � * 	 � < :
)

� � � * � 	
 � � � � .
 � ; ; ; ') 9 4

7 5 < :

� � > � � � � � �
 '

� � > � � � � � �
)

� � > � � � � � �
 (

5 � � = � �

� � � � � � � �

� � � * � 	
 � � � �
 .
 � ; ; ; ') 9 4 �
 1 � � �
 � � () (�
 ; � = � � � � � �
 � � � ?

� � � * � 	

 � � � �

7 � � � * � 	

 � � � �

Fig. 6. Module-D interface and port configuration

is the specific value defined in Module-D. It determines the

characteristic of Module-D and is used in order to allocate a

certain value to Module-D or to be allocated a certain value

from Module-D. The method means the procedure for regu-

lating some actions of each Module-D. For example, when it

is said that a robot moves, the verb move is one of methods

which belongs to Mobile Module-D. With the property and

method, the internal states and objects of one Module-D can

be accessed by the other Module-Ds.

3.5. Dual characteristic of Module-D for control

In general, a module is defined as a unit of independent

software and hardware performing a specified function or

task. The proposed Module-D can be installed, replaced

and used independently according to the electrical and me-

chanical standards. These features of Module-D are similar

to those of a common module. Module-D, however, has spe-

cial and peculiar features. Each Module-D is composed of

the components (often called devices or units) which have

similar characteristics or are grouped with specific require-

ments. In other words, one Module-D which is independent

of the other Module-Ds is the part of a whole system, and

also the assembly which integrates various components. This

concept of Module-D was designed to satisfy both of delib-

erative and reactive control as shown in Fig. 7. To execute

! � �
 � �
 � � � � � ' � � � " � � � � � � � � � �! � �
 � �
 � � � � " � � � % � ! � �
 � �
 � � � � � ' � � � " � � � � � � � � � �! � �
 � �
 � � � � " � � � % �

Fig. 7. A dual characteristic of Module-D

a certain mission or scenario, Module-Ds are combined as

parts of the proposed personal robot under the control of the

integrated high-level intelligence; this means the feature of

adaptable construction as mentioned in the previous section.

Whereas, each of Modules can behavior immediately by it-

self in case of emergency because each of them is a assembly

which combines inner components of itself under control of

its own low-level intelligence. For example, when the robot

listens the commands of “Go to the living room and turn on

TV”, it analyzes the assigned mission, and execute the mis-

sion with the combination of Module-Ds. On the other hand,

when a present mission is to clean a room and the robot de-

tects a baby on the moving path, Mobile Module-D controls

motors to avoid a baby without regard to the conditions

of any other Module-Ds or the mission. To communicate

the large-sized information for the deliberative control and

transmit fast the low-level data for the behavior-based reac-

tive control, IEEE1394 is used as the communication network

among Module-Ds (bandwidth of Maximum 400Mbps). To

be suited to these controls, Module-D has its own controller

for interfacing internal components. Each Module-D is char-

acterized as follows:

• Brain Module-D learns sequential behaviors such as sym-

bolic planning and reinforcement learning. It synthesizes the

information or low data from the other Module-Ds to analyze

a circumstance and the state of whole system. In addition,

it takes charge of communication of DHR as human being’s

brain controls a nervous system.

• Sensor Module-D has various components to detect and

sense surroundings like human being’s sense organ. It in-

tegrates various sensor interfaces. A kind of sensor belongs

to the other Module-Ds as occasion demands. For exam-

ple, Mobile Module-D has a close-range infrared sensor for a

emergency stop. Sensor Module-D of DHR has SBC(Single

board computer) as a controller. It will be replaced to the

integrated board for sensor-interface developed by the re-

searchers of the sub-project II; the board interfaces ultra-

sonic, laser, infrared.

• Mobile Module-D provides mobility of DHR. It has been

tested with various mechanisms such as differential drive and

synchro-drive; synchro-drive mechanism was developed by

the researchers of the sub-project IV.

• Vision Module-D was designed for the complicated pro-

cessing of vision signals. Advanced Vision Module-D such

as 3D-stereo vision and CMOS image sensor has been devel-

oped by the researchers of the sub-project IV.

• Other Modules which are Voice recognition & synthesis,

Sound localization, Modular-arm, Artificial skin, and Navi-

gation & localization have been developed and will be devel-

oped by the researchers of the sub-project II and IV.

3.6. Materialization of DynI

To evaluate the infrastructure DynI for the integration of

Module-Ds, authors developed DHR (Digital Home Robot)

I and II which are our original personal robot platforms.

Module-Ds of DHR have been renewed continuously. Fig. 8

� � % � $

� � % � $ $

Fig. 8. DHR I and II based on DynI

shows the platform. Each Module-D of DHR can be easily at-

tached to and detached from the whole system mechanically.

It is the shape of a rectangular parallelepiped and connected

each other with the standardized hardware connector. The

mechanism was designed in order to put together the new

models of Module-D and component. The more hardware

information of Module-D and DHR were described in the pre-

vious paper [5]. Fig. 9 shows some navigation experiments

by combination of Module-D; it represents the navigation of

DHR when Vision and Sensor Module-D are attached to and

detached from two Module-D which are Brain and Mobile

Module-D. Each of Fig. 9(a), (b), (c) and (d) mean map-

based, sensor-based, vision-based and all-equipped naviga-

tion. DynI and DHR of its robot platform have been applied

 � � � � � & � � � �

� � � � � � �) � � � � � �

�

� � � � � � & � � � �

� � � � � � �

�

 � � � � � & � � � �

 � � � � �

�

� � � � � � & �
 ' '

�

Fig. 9. Navigation by combination of Module-Ds

to RDC (Robot Design Center) which is developed by our

co-worker. It is graphical design tool for the developers and

end-users of personal robots [6]. Furthermore, Authors have

developed new applications for Dyni. They are studies on

the control of electric home appliances using vision image

and the localization using RF-ID in the intelligence home

based on ubiquitous computing. They will be presented in

the next paper.

4. Conclusions
In this paper, we introduced the infrastructure DynI for per-

sonal robots, and also presented VM-D and Module-D as its

essential elements of software and hardware. They support

the integration technology and modular-based development

because they are independent of hardware and OS. Conse-

quently, DynI can realize the standardization for personal

robots. Furthermore, it can accelerate the development of

person robots. We applied the proposed DynI to our plat-

form DHR I and II, and proved its capability as the infras-

tructure for personal robots. Our goal is to develop an the

more effective and adaptable infrastructure to be shared by

the other developers. In the future work, we will apply DynI

to the application for personal robots which are missions and

scenarios in intelligent home environments.

References
[1] Rodney. A. Brooks, “Intelligent Room Project”, Proc. of Second

International Conference on Cognitive Technology, pp. 271-

278, Aug 1997.

[2] Joo-ho Lee, Hideki Hashimoto, “Intelligent Space - concept and

contents”, Advance Robotics, vol. 16, No. 3, pp. 265-280, 2002.

[3] Alex Pentland, “Smart rooms, smart clothes”, Proc. of Four-

teenth International Conference on Pattern Recognition, vol.

2, pp. 949-953, Aug 1998.

[4] M. Weiser, “The Computer for the Twenty-First Century”, Sci-

entific American, pp. 94-104, September 1991.

[5] S. G. Roh, S. M. Baek, D. H. Lee, K. H. Park, T. K. Moon, S. W.

Ryew, J. Y. Kim, T. Y. Kuc, H. S. Kim, H. G. Lee, H. R. Choi ,

“Development of Personal Robot Platform : Approach for Modu-

lar Desing”, International Conference on Control, Automation

and System (ICCAS), pp. 2313-2318, October 2002.

[6] H. R. Kim, D. W. Kim, H. S. Kim, H. G. Lee, “Toward the Per-

sonal Robot Software Framework”, International Conference on

Control, Automation and System (ICCAS), pp. 2307-2312, Oc-

tober 2002.

[7] P. Fiorini, E. Prassler, “Cleaning and Household Robots: A

Technology Survey,” Autonomous Robots, vol. 9, No. 3, pp. 227-

235, December 2000.

[8] E. Prassler, A. Ritter, C. Schaeffer, P. Fiorini, “A Short History

of Cleaning Robots,” Autonomous Robots, vol. 9, No. 3, pp.

211-226, December 2000.

[9] B.J Lee, H.G. Lee, J.H Lee, G.T. Park, “New architecture for

mobile robots in home network environment using Jini,” Proc. of

IEEE International Conference on Robotics and Automation,

vol. 1, pp. 471-476, May 2001.

[10] M. Fujita, “Digital Creatures for Future Entertainment

Robotics” Proc. of IEEE International Conference on Robotics

and Automation, vol. 1, pp. 801-806, April 2000.

[11] F. Kanehiro, K. Fujiwara, S. Kajita, K. Yokoi, K. Kaneko,

H. Hirukawa, Y. Nakamura, K. Yamane, “Open Architecture

Humananoid Robotics Platform” Proc. of IEEE International

Conference on Robotics and Automation, vol. 1, pp. 24-30, May

2002.

[12] A.H. Jones, G.N. DeSouza, A.C. Kak, “A Multi-processing Soft-

ware Infrastructure for Robotic System,” Proc. of IEEE Inter-

national Conference on Robotics and Automation, vol. 1, pp.

193-198, May 2001.

[13] M. Lindstrom, A. Oreback, H.I. Christensen, “BERRA: A Re-

search Architecture for Service Robots,” Proc. of IEEE Inter-

national Conference on Robotics and Automation, vol. 4, pp.

3278-3283, April 2000.

[14] E. Guglielmelli, C. Laschi, P. Dario, “Robots for personal use:

humanoids vs. distributed systems,” International Symposium

on Humanoid Robots,, October 1999.

[15] C. Sayers, Remote Control Robotics. New York: Springer Ver-

lag, 1998.

[16] T. Sekimoto, T. Tsubouchi, and S. Yuta, “An Implementation

of a Human Interface using a Touch Panel and Visual Images for

Controlling a Vehicle,” IEEE International Workshop on Robot

an Human Communication, pp. 451-455, September 1996.

[17] Linux 1394 Library. http://www.linux1394.org

[18] T. Fong, C. Thorpe “Vehicle Teleoperation Interfaces,” Au-

tonomous Robots, vol. 11, No. 1 pp. 9-18, July 2001.

[19] R. Alami, M. Herrb, B. Morisset, R. Chatila, F. Ingrand, P.

Moutarlier, S. Fleury, M. Khatib,T. Simeon, “Around the lab in

40 days,” Proc. of IEEE International Conference on Robotics

and Automation, vol. 1, pp. 88-94, April 2000.

[20] G. Dudek, M. Jenkin Computational Principles of Mobile

Robotics,. Cambridge, United Kingdom : Cambridge University

Press, 1998.

[21] A. Goeurguiev, P.K. Allen, E. Gold, P. Blaar, “Design, Archi-

tecture and Control of a Mobile Site-Modeling Robot,” Proc. of

IEEE International Conference on Robotics and Automation,

vol. 4, pp. 3266-3271, April 2000.

[22] F. Michaud, J. Audet, D. Letourneau, L. Lussier, C. Theberge-

Turmel, S. Caron, “Experiences with an Autonomous Robot At-

tending AAAI,” IEEE Intelligent Systems, vol. 16, No. 5, pp.

23-29, Sept 2001.

[23] M. Beetz, T. Arbuckle, T. Belker, A.B. Cremers, D. Schulz, M.

Bennewitz, W. Burgard, D. Hahnel, D. Fox, H. Grosskreutz,

“Integrated, plan-based control of autonomous robot in human

environments,” IEEE Intelligent Systems, vol. 16, No. 5, pp.

56-65, Sept 2001.

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2039
	page21: 2040
	page31: 2041
	page41: 2042
	page51: 2043
	page61: 2044

