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Abstract: It is known that HIV (Human Immunodeficiency Virus) infection, which causes AIDS after some latent period, is

a dynamic process that can be modeled mathematically. Effects of available anti-viral drugs, which prevent HIV from infecting

healthy cells, can also be included in the model. In this paper we illustrate control theory can be applied to a model of HIV

infection. In particular, the drug dose is regarded as control input and the goal is to excite an immune response so that

the symptom of infected patient should not be developed into AIDS. Finite horizon optimal control is employed to obtain the

optimal schedule of drug dose since the model is highly nonlinear and we want maximum performance for enhancing the immune

response. From the simulation studies, we find that gradual reduction of drug dose is important for the optimality. We also

demonstrate the obtained open-loop optimal control is vulnerable to parameter variation of the model and measurement noise.

To overcome this difficulty, we finally present nonlinear receding horizon control to incorporate feedback in the drug treatment.

Keywords: Chemotherapy, HIV, Optimal control, Receding horizon control

1. Introduction
Human Immunodeficiency Virus (HIV) is the virus that

causes Acquired Immune Deficiency Syndrome (AIDS). In-

fection with HIV can weaken the immune system in human

body to a level at which it has difficulty fighting off certain

infections. This is because a major target of HIV is the CD4

T-helper cell, which is a key component of the adaptive im-

mune system in human body, and HIV infection reduces the

number of CD4 cells in the body. AIDS is usually judged

by counting CD4 cells; when the count of CD4 cells is below

200/mm3 in blood, the HIV infected person is regarded as

an AIDS patient [12]. With very few CD4 cells the immune

system of a patient cannot function normally, and thus, the

patient is very vulnerable to other infections. These types

of infections are known as ‘opportunistic infections’ because

they take the opportunity a weakened immune system gives

to cause illness or to result in death.

Although HIV weakens the immune system, it still works

inside the patient. For example, APC1 of a HIV infected

patient still signals precursor CTL (Cytotoxic T Lympho-

cytes) cells to differentiate into killer T cells (effector CTL).

In addition, killer T cells still destroy infected CD4 cells in

which new virus is born. On the other hand, there are several

developed drugs which can inhibit HIV from infecting CD4

cells. This means that HIV infection process is a quite com-

plicated interaction among many different cells, virus and

drug. Therefore, some quantitative analysis (as well as a

qualitative one) might be important.

In order to gain much insight about this complicated phe-

nomenon, mathematical models of HIV infection (including
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1Antigen-Presenting Cell, whose abundance is approximated by the number

of infected cells in the model (1) of the next section.

the effects of drugs) have been developed in, for example,

[1, 7, 11, 13, 14]. Based on these models, control engineers

have also studied optimal drug dose control problems (see,

e.g., [2,4,6,8,9,16,17,21]). In particular, Wodarz and Nowak

[18–20] have recently presented a model in which both the

memory CTL precursor and the memory CTL effector are

appropriately described, and have shown that the medica-

tion can be stopped while the viral load and the number of

uninfected CD4 cells remain at a low and high level, respec-

tively, so that the HIV infected patient would not progress to

AIDS. Zurakowski and Teel [21] have bestowed some control

engineering concept upon the result of Wodarz and Nowak

by applying Model Predictive Control method to the model

of [19].

This paper further investigates the model of [7,20] in the

sense that continuous variation of drug dose is allowed. Our

result shows that a gradual reduction of dose leads to maxi-

mally excited CTL response, which has not been addressed

in the previous works of [18–21] where either full dose or

no medication is allowed. In Section 2, we formulate our

problem and give some analysis of the model considered in

this paper. Optimal control result is illustrated in Section 3

while feedback control via receding horizon control technique

is presented in Section 4. Conclusions are given in Section

5.

2. Model Description and Analysis
There are already several mathematical models available

which describe interactions between HIV and immunocytes

in human body. (See [14] or [11] for comprehensive exposi-

tion of the HIV infection modeling.) Among them, we have

chosen a model from [7, 20] because the CTL response is

appropriately modeled2.

2It is interesting to see that other models such as used in [2, 4, 6, 9, 16] do

not have memory CTL terms, so that termination of drug treatment again



The model considered in this paper is given by

ẋ(t) = λ − dx(t) − β(1 − ηu(t))x(t)v(t)

ẏ(t) = β(1 − ηu(t))x(t)v(t) − ay(t) − py(t)z(t)

v̇(t) = ky(t) − µv(t)

ẇ(t) = cx(t)y(t)w(t) − cqy(t)w(t) − bw(t)

ż(t) = cqy(t)w(t) − hz(t)

(1)

where all the states implies the population of specified cells

(or virus) in a unit volume of blood (and therefore they are

meaningful only when positive). Each of them is uninfected

CD4 T-helper cell (x), infected CD4 T-helper cell (y), mem-

ory CTL precursor (w), memory CTL effector (z) and free

virus (v). The input (u) represents the drug dose, which

may have values between 0 and 1. If u = 1, a patient is fully

dosed, while zero input implies no medication at all.

An interpretation of the model is not very difficult. For

example, the population of healthy (uninfected) CD4 T-

helper cell increases at a rate λ (since it is produced from

thymus), and decreases at a rate dx (since a cell dies natu-

rally) which is modeled to be proportional to the population

of x. The CD4 T-helper cell (x) is also a target of HIV (v)

so that its population decreases proportionally to x(t) and

v(t). When the cell x is infected, it becomes the infected

cell y that generates new virus, which is modeled by the

term ky(t) in the third equation. The infected cell y and the

virus v also die out at a rate ay and µv, respectively. The

model (1) also describes the ‘adaptive cell-mediated immune

system’ equipped in human body. They consist of the CTL

precursor w (a cell which provides a long-term memory for

a specific antigen; HIV in this paper) and the CTL effector

z (a cell which actually kills the infected cell y at a rate pyz;

see the second equation). The cell w differentiates into the

cell z at a rate of cqyw (that is, the given model implies that

the larger population of the infected cell y and the CTL pre-

cursor w makes the population of z increase more quickly).

Finally, the term cxyw in the fourth equation implies that

the CTL precursor w is generated at a rate proportional to

the number of x, y and w itself.

The model (1) also includes the effect of the drug known

as Reverse Transcriptase Inhibitor (RTI), whose role is to

inhibit the virus from infecting new cells by preventing the

reverse transcription3. Therefore, the control input u, repre-

senting RTI, may alter the infection rate β to β(1− η) when

the drug is maximally prescribed (i.e., u = 1). Here, η is a

model parameter indicating the effect of a drug; η ∈ [0, 1].

We have also taken the parameters in the model from [7],

which are λ = 1, d = 0.1, β = 0.02, a = 0.2, p = 1, c = 0.027,

q = 0.5, b = 0.001, h = 0.1, k = 25, µ = 1, and η = 0.98.

The time derivative in the model is taken with respect to

time of a day, i.e., x(1), x(2), · · · imply the quantity of x at

the first day, the second day and so forth.

leads to the proliferation of viral load. Although those models fit well to

the description of the initial phase of HIV infection, it is not suitable for

developing a long-term plan of medical treatment for HIV patients.
3Reverse transcription is a process of HIV infection that the genetic code

of HIV to join the DNA of host cell (y in the model) in order to force the

host cell to produce another HIV.

With these parameters at hand, the equilibrium points are

easily found by making the right-hand side of (1) zero. We

illustrate four equilibrium points that the model has when

there’s no medication (u = 0).

Point 1:

x̄ =
λ

d
, ȳ = v̄ = w̄ = z̄ = 0.

This point is for a person not having HIV. Stability analysis

by the local linearization of the model with given parame-

ters shows that this point is an unstable equilibrium. The

model, therefore, asserts that it is impossible to revert a

patient, once infected, back to the normal status before in-

fection with a retraction of medication.

Point 2:

x̄ =
aµ

βk
, ȳ =

µv̄

k
, v̄ =

λ − dx̄

βx̄
, w̄ = z̄ = 0.

With the given parameters, it has the values of x̄ = 0.4,

ȳ = 4.8 and v̄ = 120, and therefore, this is the status of a

patient, for whom HIV dominates. Stability analysis shows

it is a stable equilibrium.

Point 3:

x̄ =
cµ(λ + dq) − kbβ +

√
[cµ(λ + dq) − kbβ]2 − 4c2dqλµ2

2cdµ
,

ȳ =
b

c(x̄ − q)
, v̄ =

kȳ

µ
, w̄ =

hz̄

cqȳ
, z̄ =

βx̄v̄ − aȳ

pȳ
.

With our paramters, it has

[x̄, ȳ, v̄, w̄, z̄]T =
[
9.8, 0.004, 0.1, 8751, 4.7

]T

=: Xeq, (2)

which is locally stable. It is seen that the numbers of viral

load and infected cells are maintained small while the CTL

precursor has a large number, which is desired. Also, be-

cause it is locally stable, our control goal will be to drive an

initial state X0 to a neighborhood of Xeq. Then, in spite of

treatment suspension, a patient is switched into the status

of long-term non-progression to AIDS.

Point 4:

x̄ =
cµ(λ + dq) − kbβ − √

[cµ(λ + dq) − kbβ]2 − 4c2dqλµ2

2cdµ
,

ȳ =
b

c(x̄ − q)
, v̄ =

kȳ

µ
, w̄ =

hz̄

cqȳ
, z̄ =

βx̄v̄ − aȳ

pȳ
.

With our parameters, it has

[x̄, ȳ, v̄, w̄, z̄]T = [0.51, 3.72, 93.05, 0.11, 0.055]T ,

which is unstable. This point is not of interest for our treat-

ment.

For the presentation, two sets of initial conditions are cho-

sen by

Xa : = [x(0), y(0), v(0), w(0), z(0)]T

= [0.4, 4.8, 119.9, 0.0001, 0.0001]T



and

Xb : = [x(0), y(0), v(0), w(0), z(0)]T

= [9.94, 0.0069, 0.189, 0.0026, 8.43 × 10−6]T .

The first one (Xa) represents a patient who was infected

by HIV quite a long time ago and thus virus population is

dominant while the second one (Xb) is for a patient who has

been treated by RTI for a long time after infection4.

3. Optimal Scheduling of Drug Treatment
In order to solve the problem of enhancing the CTL re-

sponse, formulated in the previous section, we formally pose

an input-constrained finite-horizon optimal control problem

given as follows.

Problem: Find an optimal control u∗(·) : R[0,Tf ] → [0, 1]

which minimizes the performance index

J(X0, u(·))

= (X(Tf ) − Xeq)
T Qf (X(Tf ) − Xeq) +

∫ Tf

0

u2(t)dt (3)

where X(t) = [x(t), y(t), v(t), w(t), z(t)]T is the solution tra-

jectory of system (1) initiated at time t = 0 by X0.

For this problem to be meaningful, the target equilibrium

Xeq is taken by (2) and the initial condition X0 of system

(1) will be taken either by Xa or Xb in the previous section.

We also take Tf = 420(days) so that the medication schedule

of more than one year would be obtained. In the terminal

cost, we select Qf = diag(1, 1, 1, 0.001, 1) so that the cost

for the final state w(Tf ) is less weighted. Small weighting

to the state w is due to the fact that the dynamics for the

CTL precursor (w) is quite slow and with the finite-horizon

of 420 days it is not fully developed, and thus, at the end

of optimization horizon, the difference between w(Tf ) and

w̄ = 8751 (target point) would be of the order of several

thousands.

The problem to be solved is a continuous-time optimal

control problem, which means the decision vector u(·) be-

longs to the infinite-dimensional vector space. However, to

solve it by the digital computer, it is necessary to approx-

imate u(·) by some finite-dimensional vector and discretize

the nonlinear dynamics (1). For our problem, the optimiza-

tion horizon of 420 days are divided by 420 knot points so

that sampling period becomes one day and the continuous

signal u(·) has 420 knot points. Although the closed form of

discrete time model is not available, we are still able to han-

dle our problem by integrating the continuous time model

(1) using Runge-Kutta integration (see, e.g., [3]). To in-

crease the accuracy, we use variable step-size Runge-Kutta

4In fact, we have identified those points Xa and Xb by simulating the model

(1) with an initial condition [10, 0.0001, 0.01, 0.0001, 0.0001] representing

newly infected patient (compare the equilibrium point 1). Xa is obtained

by integrating (1) for 60 days without medication, and Xb is obtained by

integrating (1) again from Xa for another 60 days with full medication

u = 1.
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Fig. 1. Simulation result for the patient A. Horizontal and

vertical axes indicate time (order of a day) and the value

of states, respectively. Plot of optimal control u: In the

early stage of approximately 1 week, the drug is fully

dosed for the reduction of viral load. However, some

amount of virus is necessary in order to increase the CTL

response (the state w) that changes slowly. After about

40 days, the optimal dose decreases gradually, which is

a compromise between two goals; small number of virus

and large number of memory CTL. Plot of states x, y, z:

The number of uninfected cell (x) goes back to normal,

and infected cell (y) decays, which is caused by the in-

creased CTL z. Plot of virus v: It decays. Plot of CTL

w: It goes toward the desired equilibrium point 3.

algorithm with piecewise linear interpolation of u(t) during

the sampling period (i.e., between the knot points). For

these purposes, a package RIOTS5 running in MATLAB en-

vironment is used in this paper.

The solution for our problem is illustrated in Fig. 1 and

Fig. 2, which are for the patients A and B having the initial

condition of Xa and Xb, respectively. From these simulation

results, it is clear that the optimal drug dose shows the pat-

tern of gradual reduction taking about 3 months. While it

has been shown in [18–21] that the termination of medication

is possible with the stimulation of CTL response, it has not

been reported that gradual reduction of dose would enhance

the CTL response optimally, to the authors’ knowledge.

In Fig. 2, it can be noticed that a patient is not dosed

for around 3 days. Since the initial condition Xb is for the

patient who has been dosed for a long time, this result implies

that an interruption of treatment is necessary6, which has

5Recursive Integration Optimal Trajectory Solver: A commercial package

to solve continuous time optimal control problem for nonlinear dynamics.
6The fourth equation of (1) can also be written by ẇ = (c(x − q)y − b)w.

Since our ultimate goal is to have a large number of w so that the CTL

effector z would suppress the infected cell (and thus, the virus), it is nec-

essary to have positive value of (c(x − q)y − b) in the early phase of HIV

infection. This can be achieved when both the uninfected cell x and the in-

fected y need to be abundant, but by the drug treatment for a long former

days the abundance of infected cell y might be too small. In this case, some

interruption of treatment will enhance the population of v and y, which in

turn enhances the CTL response w.
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Fig. 2. Simulation result for the patient B. This is the case

when the patient has been treated by RTI for a long

period so that the initial conditions for viral load v, CTL

precursor w and CTL effector z have very small values.

Since the CTL response cannot be excited with these

values, the drug input initially maintains zero value for

short period of time (3 days), after that it is rapidly

changed to nearly full dose. Again, gradual reduction of

dose is observed after the initial period.
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Fig. 3. Simulation result for the patient A. For practical im-

plementation, drug dose is quantized by 10 levels. Nev-

ertheless, it still maintains similar trend of the state tra-

jectories in Fig. 1.

been already observed in [18–20]. However, our result of Fig.

2 further shows that, rapid increase and gradual reduction

of dose would be better for the same case.

Finally, we have tried quantized dose treatments of drug

in Fig. 3 because continuous variation of dose seems hard

to apply in the real treatment of patients. Here, we have

divided the dose by 10 levels. The value of performance

index J in this case is 50142 which is not very different from

the optimal case of continuous drug change (J = 49796). To

the contrary, an abrupt change of dose from 1 to 0 leads to

the cost of 60307, which is quite far from the optimal. We

Fig. 4. Simulation result for the patient B. The same opti-

mal control problem is solved with a constraint that the

input u can have 0, .25, .5, .75 and 1 only. The result

still shows the similar pattern of gradual dose reduction

as in Fig. 2.
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Fig. 5. Blind application of the (open-loop) optimal control

u of Fig. 1 to the system having parameter variation

of ±20%. Viral load v does not decrease and the CTL

response w is not excited.

also have found the optimal dose control with the constraint

that the input u can only have 0, .25, .5, .75, and 1 with

sampling period of 2 weeks. The result is given in Fig. 4

where the similar gradual reduction of dose can be observed.

4. Employing Feedback: Receding Horizon
Control

In the real environment, parameter uncertainty in the

model and measurement noise are inevitable. Fig. 5, for

example, shows the case that the optimal drug control is

calculated from the given nominal model (i.e., the control in

Fig. 1) and is applied to a model having perturbed param-

eters. For the simulation, each parameter is perturbed by

±20% from the nominal values; that is, λ = 0.8, d = 0.12,

β = 0.016, a = 0.16, p = 0.8, c = 0.0216, q = 0.6, b = 0.0012,
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Fig. 6. Simulation result for the patient A. Parameters

are perturbed by ±20% and random noise of ±10% is

added to each measurement of the state. It is observed

that, although the reaction of the system to the drug

treatment becomes quite slow, it still excites the CTL

response.

h = 0.08, k = 30 and µ = 0.8 (η is the same as before). The

result shows that the CTL response is not excited and viral

load remains at high level of abundance. To overcome this

problem, some type of feedback control seems necessary.

Receding Horizon Control (or Model Predictive Control

which is now alternatively used in the literature) is a feed-

back scheme that has been widely employed in many prac-

tical situations, and is known to be a way to incorporating

‘feedback’ when the control is obtained from an open-loop

optimal control problem [10]. Main idea is to solve an open-

loop finite horizon optimization first, and the resulting con-

trol trajectory is applied to the system for a fraction of the

optimization length. At the end of the fraction of time, the

optimization is solved again with new initial condition mea-

sured at that time and the resulting control is applied again

for the fraction of time. This process is repeated, which leads

to a sampled feedback control.

While the idea of using RHC for the HIV infection control

has been already presented in [21] where drug dose has either

0 (no medication) or 1 (full dose), we propose, in this paper,

the receding horizon control with continuous change of drug

dose. For the stability of closed-loop system, we take the

optimization horizon large enough as 700 days. (See [5] for a

justification that long enough optimization horizon guaran-

tees the closed-loop stability.) The sampling period for the

simulation is 1 week; that is, the open-loop control is ob-

tained every 7 days and it is applied to the system for 7 days

while the rest of control trajectory is discarded. The result is

given in Fig. 6, in which it is observed that the CTL response

is excited and viral load decreases, even under ±10% mea-

surement noise (and the same parameter variation as Fig.

5).

5. Conclusions
In this paper, we have shown that a continuous-time non-

linear optimal control scheme can be employed for enhancing

the CTL immune response by optimally scheduling the drug

treatment for HIV infected patients. Our finding from simu-

lation studies indicates that gradual reduction of drug dose

is important for enhancing the CTL immune response. This

point has not yet been exploited in the similar results of

[7, 18–21]. In addition, to overcome the problem that the

obtained open-loop control may not be directly applied to

the system having uncertain parameters to some extent, we

have applied nonlinear receding horizon control scheme to

our system, which results in moderate performance under

measurement noise and parameter uncertainty.

References
[1] H.K. Altes, D.A. Price and V.A. Jansen, “Effector cy-

totoxic T lymphocyte numbers induced by vaccination

should exceed levels in chronic infection for protection

from HIV,” Vaccine, vol. 20, pp. 3–6, 2002.

[2] M.E. Brandt and G. Chen, “Feedback control of a bio-

dynamical model of HIV-1,” IEEE Trans. on Biomedi-

cal Engineering, vol. 48, no. 7, pp. 754–759, 2001.

[3] A.E. Bryson, Dynamic Optimization, Addison Wesley

Longman, Inc., 1999.

[4] J.A.M. Felippe de Souza, M.A.L. Caetano and T.

Yoneyama, “Optimal control theory applied to the anti-

viral treatment of AIDS,” In proceedings of Conference

on Decision and Control, Sydney, 2000.

[5] G. Grimm, M.J. Messina, A.R. Teel and S. Tuna,

“Model predictive control when a local control Lya-

punov function is not available,” In proceedings of

American Control Conference, 2003.

[6] D. Kirschner, S. Lenhart and S. Serbin, “Optimal con-

trol of the chemotherapy of HIV,” J. of Mathematical

Biology, vol. 35, pp. 775–792, 1997.

[7] S. Kubiak, H. Lehr, R. Levy, T. Moeller, A. Parker

and E. Swim, “Modeling control of HIV infec-

tion through structured treatment interruptions with

recommendations for experimental protocol,” CRSC

Technical Report (CRSC-TR01-27), 2001. (Also at

http://www.math.montana.edu/∼parker.)

[8] J.J. Kutch and P. Gurfil, “Optimal control of HIV infec-

tion with a continuously-mutating viral population,” In

proceedings of American Control Conference, pp. 4033–

4038, 2002.

[9] U. Ledzewicz and H. Schattler, “On optimal controls

for a general mathematical model for chemotherapy of

HIV,” In proceedings of American Control Conference,

pp. 3454–3459, 2002.

[10] D. Mayne, J.B. Rawlings, C.V. Rao and P. Scokaert,

“Constrained model predictive control: stability and

optimality,”Automatica, vol. 36, pp. 789–814, 2000.

[11] M.A. Nowak and R.M. May, Virus Dynamics, Oxford

University Press Inc., New York, 2000.



[12] On-line documents at http://www.cdc.gov/hiv, Di-

visions of HIV/AIDS Prevention, Centers for Disease

Control and Prevention.

[13] H. Ortega and M. Martin-Landrove, “A model for con-

tinuously mutant HIV-1,” In proceedings of 22nd An-

nual EMBS International Conference, pp. 1917–1920,

Chicago, 2000.

[14] A.S. Perelson and P.W. Nelson, “Mathematical analysis

of HIV-1 dynamics in vivo,” SIAM Review, vol. 41, no.

1, pp. 3–44, 1999.

[15] A. Schwartz, “Theory and implementation of numerical

methods based on Runge-Kutta integration for solving

optimal control problems,” Ph.D Dissertation, Univ. of

California, Berkeley, 1996.

[16] R.F. Stengel, R. Ghigliazza, N. Kulkarni and O.

Laplace, “Optimal control of a viral disease,” In pro-

ceedings of American Control Conference, pp. 3795–

3800, 2001.

[17] L.M. Wein, S.A. Zenios and M.A. Nowak, “Dynamic

multidrug therapies for HIV: A control theoretic ap-

proach,” J. of Theoretical Biology, vol. 185, pp. 15–29,

1997.

[18] D. Wodarz and M.A. Nowak, “Specific therapy regimes

could lead to long-term immunological control of HIV,”

Proc. of National Academy Science, vol. 96, no. 25, pp.

14464–14469, 1999.

[19] D. Wodarz, “Helper-dependent vs. helper-independent

CTL responses in HIV infection: implications for drug

therapy and resistance,” J. of Theoretical Biology, vol.

213, pp. 447–459, 2001.

[20] D. Wodarz and M.A. Nowak, “Mathematical models of

HIV pathogenesis and treatment,” BioEssays, vol. 24,

pp. 1178–1187, Wiley Periodicals, 2002.

[21] R. Zurakowski and A.R. Teel, “Enhancing immune re-

sponse to HIV infection using MPC-based treatment

scheduling,” In proceedings of American Control Con-

ference, Denver, 2003.


	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 1951
	page21: 1952
	page31: 1953
	page41: 1954
	page51: 1955
	page61: 1956


